IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v9y1996i1p729-732.html
   My bibliography  Save this article

A natural convection flat-plate collector solar cooker with short term storage

Author

Listed:
  • Haraksingh, I.
  • Mc Doom, I.A.
  • Headley, O.St.C.

Abstract

A double-glazed flat-plate collector covered with a selective surface - Maxorb® foil - was used as the power source for a solar cooker. Coconut oil was used as the heat transfer fluid. At the highest part of the thermosyphon loop is an oil bath in which two cooking pots are immersed to facilitate good heat transfer between the working fluid and the cooking pot. For simplicity, circulation is by natural convection; there are no pumps in the system. Temperatures of approximately 150°C can be achieved between 10:00 hr and 14:00 hr under insolation conditions of 25 MJm−2day−1 with a peak value of 1000 Wm−2.

Suggested Citation

  • Haraksingh, I. & Mc Doom, I.A. & Headley, O.St.C., 1996. "A natural convection flat-plate collector solar cooker with short term storage," Renewable Energy, Elsevier, vol. 9(1), pages 729-732.
  • Handle: RePEc:eee:renene:v:9:y:1996:i:1:p:729-732
    DOI: 10.1016/0960-1481(96)88387-X
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/096014819688387X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0960-1481(96)88387-X?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ranjan Chaudhary & Avadhesh Yadav, 2021. "Experimental investigation of solar cooking system based on evacuated tube solar collector for the preparation of concentrated sugarcane juice used in jaggery making," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 647-663, January.
    2. Nkhonjera, Lameck & Bello-Ochende, Tunde & John, Geoffrey & King’ondu, Cecil K., 2017. "A review of thermal energy storage designs, heat storage materials and cooking performance of solar cookers with heat storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 157-167.
    3. Ho, Chii-Dong & Chen, Tsung-Ching & Tsai, Cheng-Jung, 2010. "Experimental and theoretical studies of recyclic flat-plate solar water heaters equipped with rectangle conduits," Renewable Energy, Elsevier, vol. 35(10), pages 2279-2287.
    4. Selvaraj Balachandran & Jose Swaminathan, 2022. "Advances in Indoor Cooking Using Solar Energy with Phase Change Material Storage Systems," Energies, MDPI, vol. 15(22), pages 1-32, November.
    5. Saxena, Abhishek & Varun & Pandey, S.P. & Srivastav, G., 2011. "A thermodynamic review on solar box type cookers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3301-3318, August.
    6. Headley, Oliver St.C., 1998. "Solar thermal applications in the West Indies," Renewable Energy, Elsevier, vol. 15(1), pages 257-263.
    7. Cuce, Erdem & Cuce, Pinar Mert, 2013. "A comprehensive review on solar cookers," Applied Energy, Elsevier, vol. 102(C), pages 1399-1421.
    8. Hosseinzadeh, Mohammad & Sadeghirad, Reza & Zamani, Hosein & Kianifar, Ali & Mirzababaee, Seyyed Mahdi, 2021. "The performance improvement of an indirect solar cooker using multi-walled carbon nanotube-oil nanofluid: An experimental study with thermodynamic analysis," Renewable Energy, Elsevier, vol. 165(P1), pages 14-24.
    9. Ho, C.D. & Chen, T.C., 2008. "Collector efficiency improvement of recyclic double-pass sheet-and-tube solar water heaters with internal fins attached," Renewable Energy, Elsevier, vol. 33(4), pages 655-664.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:9:y:1996:i:1:p:729-732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.