IDEAS home Printed from https://ideas.repec.org/a/spr/elcore/v24y2024i2d10.1007_s10660-024-09812-x.html
   My bibliography  Save this article

Is Bitcoin ready to be a widespread payment method? Using price volatility and setting strategies for merchants

Author

Listed:
  • Simona-Vasilica Oprea

    (Bucharest University of Economic Studies)

  • Irina Alexandra Georgescu

    (Bucharest University of Economic Studies)

  • Adela Bâra

    (Bucharest University of Economic Studies)

Abstract

Bitcoin has gradually gained acceptance as a payment method that, unlike electronic payments in dollars or euros, passes through the international trading system with zero or lower fees. Moreover, Bitcoin and e-commerce have become increasingly intertwined in recent years as cryptocurrencies gain mainstream acceptance. In this paper, we analyze Bitcoin price evolution from September 2014 until July 2023, factors that influence price volatility and assess its future volatility using Autoregressive Conditional Heteroskedasticity (ARCH) models that predict the volatility of financial returns to conceive strategies for merchants that accept Bitcoin as a payment option. The Generalized ARCH model (GARCH) extends the model to capture more persistent volatility patterns. Further, we estimate symmetric and asymmetric GARCH (1,1)-type models with normal and non-normal innovations. The best proved to be EGARCH (1,1) with t-distribution innovation. To assist merchants in making decisions regarding Bitcoin adoption, two concepts are relevant: the EGARCH model and VaR. EGARCH model is used to forecast the volatility of the financial asset, while VaR is a widely used risk management tool that estimates the potential loss in value of a portfolio over a defined period. For a merchant holding Bitcoin, VaR assists in understanding the maximum expected loss over a certain time frame with a certain level of confidence (like 95% or 99%). The results show that a VaR coverage of 0.044 at a 5% probability level suggests that there is 95% confidence that the maximum loss will not exceed 4.4% of the investment value.

Suggested Citation

  • Simona-Vasilica Oprea & Irina Alexandra Georgescu & Adela Bâra, 2024. "Is Bitcoin ready to be a widespread payment method? Using price volatility and setting strategies for merchants," Electronic Commerce Research, Springer, vol. 24(2), pages 1267-1305, June.
  • Handle: RePEc:spr:elcore:v:24:y:2024:i:2:d:10.1007_s10660-024-09812-x
    DOI: 10.1007/s10660-024-09812-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10660-024-09812-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10660-024-09812-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pavel Ciaian & d’Artis Kancs & Miroslava Rajcaniova, 2021. "The economic dependency of bitcoin security," Applied Economics, Taylor & Francis Journals, vol. 53(49), pages 5738-5755, October.
    2. Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
    3. Romi Kher & Siri Terjesen & Chen Liu, 2021. "Blockchain, Bitcoin, and ICOs: a review and research agenda," Small Business Economics, Springer, vol. 56(4), pages 1699-1720, April.
    4. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    5. Kamer-Ainur Aivaz & Ionela Florea Munteanu & Flavius Valentin Jakubowicz, 2023. "Bitcoin in Conventional Markets: A Study on Blockchain-Induced Reliability, Investment Slopes, Financial and Accounting Aspects," Mathematics, MDPI, vol. 11(21), pages 1-20, November.
    6. Ante, Lennart & Fiedler, Ingo & Strehle, Elias, 2021. "The impact of transparent money flows: Effects of stablecoin transfers on the returns and trading volume of Bitcoin," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    7. Xianfang Su & Yong Li, 2020. "Dynamic sentiment spillovers among crude oil, gold, and Bitcoin markets: Evidence from time and frequency domain analyses," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-26, December.
    8. Lyócsa, Štefan & Molnár, Peter & Plíhal, Tomáš & Širaňová, Mária, 2020. "Impact of macroeconomic news, regulation and hacking exchange markets on the volatility of bitcoin," Journal of Economic Dynamics and Control, Elsevier, vol. 119(C).
    9. Alqahtani, Mohammed & Hu, Mengqi, 2020. "Integrated energy scheduling and routing for a network of mobile prosumers," Energy, Elsevier, vol. 200(C).
    10. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    11. Ihsan Erdem Kayral & Ahmed Jeribi & Sahar Loukil, 2023. "Are Bitcoin and Gold a Safe Haven during COVID-19 and the 2022 Russia–Ukraine War?," JRFM, MDPI, vol. 16(4), pages 1-22, April.
    12. Tang, Tao & Wang, Yanchen, 2022. "Liquidity Shocks, Price Volatilities, and Risk-managed Strategy: Evidence from Bitcoin and Beyond," Journal of Multinational Financial Management, Elsevier, vol. 64(C).
    13. Mokni, Khaled & Bouteska, Ahmed & Nakhli, Mohamed Sahbi, 2022. "Investor sentiment and Bitcoin relationship: A quantile-based analysis," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    14. Zlatko BEZHOVSKI & Ljupco DAVCEV & Mila MITREVA, 2021. "Current adoption state of cryptocurrencies as an electronic payment method," Management Research and Practice, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 13(1), pages 44-50, March.
    15. Wu, Chang-Che & Ho, Shu-Ling & Wu, Chih-Chiang, 2022. "The determinants of Bitcoin returns and volatility: Perspectives on global and national economic policy uncertainty," Finance Research Letters, Elsevier, vol. 45(C).
    16. Viviane Naimy & Omar Haddad & Gema Fernández-Avilés & Rim El Khoury, 2021. "The predictive capacity of GARCH-type models in measuring the volatility of crypto and world currencies," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-17, January.
    17. Krzysztof Marecki & Agnieszka Wójcik-Czerniawska, 2020. "Cryptocurrency Market Of Bitcoin And Payment Acceptability In E-Commerce," Economy & Business Journal, International Scientific Publications, Bulgaria, vol. 14(1), pages 257-267.
    18. Jeffrey Chu & Stephen Chan & Saralees Nadarajah & Joerg Osterrieder, 2017. "GARCH Modelling of Cryptocurrencies," JRFM, MDPI, vol. 10(4), pages 1-15, October.
    19. Tsang, Kwok Ping & Yang, Zichao, 2021. "The market for bitcoin transactions," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 71(C).
    20. Yaojie Zhang & Mengxi He & Danyan Wen & Yudong Wang, 2022. "Forecasting Bitcoin volatility: A new insight from the threshold regression model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 633-652, April.
    21. A. V. Biju & Aparna Merin Mathew & P. P. Nithi Krishna & M. P. Akhil, 2022. "Is the future of bitcoin safe? A triangulation approach in the reality of BTC market through a sentiments analysis," Digital Finance, Springer, vol. 4(4), pages 275-290, December.
    22. Bojaj, Martin M. & Muhadinovic, Milica & Bracanovic, Andrej & Mihailovic, Andrej & Radulovic, Mladen & Jolicic, Ivan & Milosevic, Igor & Milacic, Veselin, 2022. "Forecasting macroeconomic effects of stablecoin adoption: A Bayesian approach," Economic Modelling, Elsevier, vol. 109(C).
    23. Chen, Wei & Xu, Huilin & Jia, Lifen & Gao, Ying, 2021. "Machine learning model for Bitcoin exchange rate prediction using economic and technology determinants," International Journal of Forecasting, Elsevier, vol. 37(1), pages 28-43.
    24. Chun Tang & Xiaoxing Liu, 2023. "Bitcoin speculation, investor attention and major events. Are they connected?," Applied Economics Letters, Taylor & Francis Journals, vol. 30(8), pages 1033-1041, May.
    25. Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
    26. Luther, William J. & Stein Smith, Sean, 2020. "Is Bitcoin a decentralized payment mechanism?," Journal of Institutional Economics, Cambridge University Press, vol. 16(4), pages 433-444, August.
    27. Muhammad MOHSIN & Sobia NASEEM & Larisa IVAȘCU & Lucian-Ionel CIOCA & Muddassar SARFRAZ & Nicolae Cristian STĂNICĂ, 2021. "Gauging the Effect of Investor Sentiment on Cryptocurrency Market: An Analysis of Bitcoin Currency," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 87-102, December.
    28. Zheng-Zheng Li & Ran Tao & Chi-Wei Su & Oana-Ramona Lobonţ, 2019. "Does Bitcoin bubble burst?," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(1), pages 91-105, January.
    29. Brauneis, Alexander & Mestel, Roland & Riordan, Ryan & Theissen, Erik, 2022. "Bitcoin unchained: Determinants of cryptocurrency exchange liquidity," Journal of Empirical Finance, Elsevier, vol. 69(C), pages 106-122.
    30. Pavel Stoimenov, 2011. "Philippe Jorion, Value at Risk, 3rd Ed: The New Benchmark for Managing Financial Risk," Statistical Papers, Springer, vol. 52(3), pages 737-738, August.
    31. Troster, Victor & Tiwari, Aviral Kumar & Shahbaz, Muhammad & Macedo, Demian Nicolás, 2019. "Bitcoin returns and risk: A general GARCH and GAS analysis," Finance Research Letters, Elsevier, vol. 30(C), pages 187-193.
    32. Muhammad MOHSIN & Sobia NASEEM & Larisa IVAȘCU & Lucian-Ionel CIOCA & Muddassar SARFRAZ & Nicolae Cristian STĂNICĂ, 2021. "Gauging the Effect of Investor Sentiment on Cryptocurrency Market: An Analysis of Bitcoin Currency," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 86-102, December.
    33. Andreas Hackethal & Tobin Hanspal & Dominique M Lammer & Kevin Rink, 2022. "The Characteristics and Portfolio Behavior of Bitcoin Investors: Evidence from Indirect Cryptocurrency Investments [The investor in structured retail products: advice driven or gambling oriented]," Review of Finance, European Finance Association, vol. 26(4), pages 855-898.
    34. Gur Huberman & Jacob D Leshno & Ciamac Moallemi, 2021. "Monopoly without a Monopolist: An Economic Analysis of the Bitcoin Payment System [Blockchain Economics]," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 88(6), pages 3011-3040.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    2. Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
    3. Roy Cerqueti & Massimiliano Giacalone & Raffaele Mattera, 2020. "Skewed non-Gaussian GARCH models for cryptocurrencies volatility modelling," Papers 2004.11674, arXiv.org.
    4. Panagiotidis, Theodore & Papapanagiotou, Georgios & Stengos, Thanasis, 2022. "On the volatility of cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 62(C).
    5. Leandro Maciel, 2021. "Cryptocurrencies value‐at‐risk and expected shortfall: Do regime‐switching volatility models improve forecasting?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4840-4855, July.
    6. Caporale, Guglielmo Maria & Zekokh, Timur, 2019. "Modelling volatility of cryptocurrencies using Markov-Switching GARCH models," Research in International Business and Finance, Elsevier, vol. 48(C), pages 143-155.
    7. Guo, Zi-Yi, 2022. "Risk management of Bitcoin futures with GARCH models," Finance Research Letters, Elsevier, vol. 45(C).
    8. Cristina Chinazzo & Vahidin Jeleskovic, 2024. "Forecasting Bitcoin Volatility: A Comparative Analysis of Volatility Approaches," Papers 2401.02049, arXiv.org.
    9. Bergsli, Lykke Øverland & Lind, Andrea Falk & Molnár, Peter & Polasik, Michał, 2022. "Forecasting volatility of Bitcoin," Research in International Business and Finance, Elsevier, vol. 59(C).
    10. Klein, Tony & Pham Thu, Hien & Walther, Thomas, 2018. "Bitcoin is not the New Gold – A comparison of volatility, correlation, and portfolio performance," International Review of Financial Analysis, Elsevier, vol. 59(C), pages 105-116.
    11. Pınar Kaya Soylu & Mustafa Okur & Özgür Çatıkkaş & Z. Ayca Altintig, 2020. "Long Memory in the Volatility of Selected Cryptocurrencies: Bitcoin, Ethereum and Ripple," JRFM, MDPI, vol. 13(6), pages 1-21, May.
    12. Hayet Ben Haj Hamida & Francesco Scalera, 2019. "Threshold Mean Reversion and Regime Changes of Cryptocurrencies using SETAR-MSGARCH Models," International Journal of Academic Research in Accounting, Finance and Management Sciences, Human Resource Management Academic Research Society, International Journal of Academic Research in Accounting, Finance and Management Sciences, vol. 9(3), pages 221-229, July.
    13. Shaw, Charles, 2018. "Conditional heteroskedasticity in crypto-asset returns," MPRA Paper 90437, University Library of Munich, Germany.
    14. Siwen Zhou, 2021. "Exploring the driving forces of the Bitcoin currency exchange rate dynamics: an EGARCH approach," Empirical Economics, Springer, vol. 60(2), pages 557-606, February.
    15. Nikolaos A. Kyriazis, 2021. "Investigating the diversifying or hedging nexus of cannabis cryptocurrencies with major digital currencies," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 845-861, December.
    16. Tan, Chia-Yen & Koh, You-Beng & Ng, Kok-Haur & Ng, Kooi-Huat, 2021. "Dynamic volatility modelling of Bitcoin using time-varying transition probability Markov-switching GARCH model," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).
    17. Mawuli Segnon & Stelios Bekiros, 2019. "Forecasting Volatility in Cryptocurrency Markets," CQE Working Papers 7919, Center for Quantitative Economics (CQE), University of Muenster.
    18. Mawuli Segnon & Stelios Bekiros, 2020. "Forecasting volatility in bitcoin market," Annals of Finance, Springer, vol. 16(3), pages 435-462, September.
    19. Jeffrey Chu & Stephen Chan & Saralees Nadarajah & Joerg Osterrieder, 2017. "GARCH Modelling of Cryptocurrencies," JRFM, MDPI, vol. 10(4), pages 1-15, October.
    20. Vahidin Jeleskovic & Claudio Latini & Zahid I. Younas & Mamdouh A. S. Al-Faryan, 2023. "Optimization of portfolios with cryptocurrencies: Markowitz and GARCH-Copula model approach," Papers 2401.00507, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:elcore:v:24:y:2024:i:2:d:10.1007_s10660-024-09812-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.