Conditional heteroskedasticity in crypto-asset returns
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Duan, Jin-Chuan, 1997. "Augmented GARCH (p,q) process and its diffusion limit," Journal of Econometrics, Elsevier, vol. 79(1), pages 97-127, July.
- Nelson, Daniel B., 1990. "ARCH models as diffusion approximations," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 7-38.
- Balcombe, Kelvin & Fraser, Iain, 2017. "Do bubbles have an explosive signature in markov switching models?," Economic Modelling, Elsevier, vol. 66(C), pages 81-100.
- Corradi, Valentina & Swanson, Norman R., 2006.
"Bootstrap conditional distribution tests in the presence of dynamic misspecification,"
Journal of Econometrics, Elsevier, vol. 133(2), pages 779-806, August.
- Valentina Corradi & Norman R. Swanson, 2003. "Bootstrap Conditional Distribution Tests In the Presence of Dynamic Misspecification," Departmental Working Papers 200311, Rutgers University, Department of Economics.
- Marc Gronwald, 2014. "The Economics of Bitcoins - Market Characteristics and Price Jumps," CESifo Working Paper Series 5121, CESifo.
- Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993.
"On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks,"
Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
- Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
- Yacine Aït-Sahalia & Jean Jacod, 2014. "High-Frequency Financial Econometrics," Economics Books, Princeton University Press, edition 1, number 10261.
- Engle, Robert F & Ng, Victor K, 1993.
"Measuring and Testing the Impact of News on Volatility,"
Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
- Robert F. Engle & Victor K. Ng, 1991. "Measuring and Testing the Impact of News on Volatility," NBER Working Papers 3681, National Bureau of Economic Research, Inc.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Olivier Scaillet & Adrien Treccani & Christopher Trevisan, 2020.
"High-Frequency Jump Analysis of the Bitcoin Market,"
Journal of Financial Econometrics, Oxford University Press, vol. 18(2), pages 209-232.
- Olivier Scaillet & Adrien Treccani & Christopher Trevisan, 2017. "High-Frequency Jump Analysis of the Bitcoin Market," Swiss Finance Institute Research Paper Series 17-19, Swiss Finance Institute.
- Scaillet, Olivier & Treccani, Adrien & Trevisan, Christopher, 2017. "High-frequency jump analysis of the bitcoin market," Working Papers unige:93900, University of Geneva, Geneva School of Economics and Management.
- Olivier Scaillet & Adrien Treccani & Christopher Trevisan, 2017. "High-Frequency Jump Analysis of the Bitcoin Market," Papers 1704.08175, arXiv.org, revised Jun 2017.
- Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
- Hall, Stephen G & Psaradakis, Zacharias & Sola, Martin, 1999. "Detecting Periodically Collapsing Bubbles: A Markov-Switching Unit Root Test," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(2), pages 143-154, March-Apr.
- Chappell, Daniel, 2018. "Regime heteroskedasticity in Bitcoin: A comparison of Markov switching models," MPRA Paper 90682, University Library of Munich, Germany.
- Caporale, Guglielmo Maria & Zekokh, Timur, 2019.
"Modelling volatility of cryptocurrencies using Markov-Switching GARCH models,"
Research in International Business and Finance, Elsevier, vol. 48(C), pages 143-155.
- Guglielmo Maria Caporale & Timur Zekokh, 2018. "Modelling Volatility of Cryptocurrencies Using Markov-Switching Garch Models," CESifo Working Paper Series 7167, CESifo.
- Jondeau, Eric & Rockinger, Michael, 2003. "Conditional volatility, skewness, and kurtosis: existence, persistence, and comovements," Journal of Economic Dynamics and Control, Elsevier, vol. 27(10), pages 1699-1737, August.
- Gourieroux,Christian & Monfort,Alain, 1995.
"Statistics and Econometric Models,"
Cambridge Books,
Cambridge University Press, number 9780521477444, January.
- Gourieroux,Christian & Monfort,Alain, 1995. "Statistics and Econometric Models," Cambridge Books, Cambridge University Press, number 9780521471626, November.
- Gourieroux,Christian & Monfort,Alain, 1995. "Statistics and Econometric Models," Cambridge Books, Cambridge University Press, number 9780521477451, January.
- Gourieroux,Christian & Monfort,Alain, 1995. "Statistics and Econometric Models," Cambridge Books, Cambridge University Press, number 9780521405515, November.
- Shi, Shuping & Arora, Vipin, 2012. "An application of models of speculative behaviour to oil prices," Economics Letters, Elsevier, vol. 115(3), pages 469-472.
- Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
- Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
- Chris Brooks & Apostolos Katsaris, 2005. "A Three-Regime Model of Speculative Behaviour: Modelling the Evolution of the S&P 500 Composite Index," Economic Journal, Royal Economic Society, vol. 115(505), pages 767-797, July.
- Ghoudi, Kilani & Rémillard, Bruno, 2014. "Comparison of specification tests for GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 291-300.
- Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
- Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
- Aït-Sahalia, Yacine & Xiu, Dacheng, 2016. "Increased correlation among asset classes: Are volatility or jumps to blame, or both?," Journal of Econometrics, Elsevier, vol. 194(2), pages 205-219.
- Adrian (Wai-Kong) Cheung & Eduardo Roca & Jen-Je Su, 2015. "Crypto-currency bubbles: an application of the Phillips-Shi-Yu (2013) methodology on Mt. Gox bitcoin prices," Applied Economics, Taylor & Francis Journals, vol. 47(23), pages 2348-2358, May.
- Jeffrey Chu & Stephen Chan & Saralees Nadarajah & Joerg Osterrieder, 2017. "GARCH Modelling of Cryptocurrencies," JRFM, MDPI, vol. 10(4), pages 1-15, October.
- Jin‐Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32, January.
- Jushan Bai, 2003. "Testing Parametric Conditional Distributions of Dynamic Models," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 531-549, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chappell, Daniel, 2018. "Regime heteroskedasticity in Bitcoin: A comparison of Markov switching models," MPRA Paper 90682, University Library of Munich, Germany.
- Shazia Salamat & Niu Lixia & Sobia Naseem & Muhammad Mohsin & Muhammad Zia-ur-Rehman & Sajjad Ahmad Baig, 2020. "Modeling cryptocurrencies volatility using GARCH models: a comparison based on Normal and Student's T-Error distribution," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 7(3), pages 1580-1596, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Charles Shaw, 2018. "Conditional heteroskedasticity in crypto-asset returns," Papers 1804.07978, arXiv.org, revised Dec 2018.
- Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
- Cristina Chinazzo & Vahidin Jeleskovic, 2024. "Forecasting Bitcoin Volatility: A Comparative Analysis of Volatility Approaches," Papers 2401.02049, arXiv.org.
- Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
- Christiansen, Charlotte, 2005.
"Multivariate term structure models with level and heteroskedasticity effects,"
Journal of Banking & Finance, Elsevier, vol. 29(5), pages 1037-1057, May.
- Christiansen, Charlotte, 2003. "Multivariate Term Structure Models with Level and Heteroskedasticity Effects," Finance Working Papers 02-19, University of Aarhus, Aarhus School of Business, Department of Business Studies.
- Lin, Shin-Hung & Huang, Hung-Hsi & Li, Sheng-Han, 2015. "Option pricing under truncated Gram–Charlier expansion," The North American Journal of Economics and Finance, Elsevier, vol. 32(C), pages 77-97.
- Stentoft, Lars, 2005. "Pricing American options when the underlying asset follows GARCH processes," Journal of Empirical Finance, Elsevier, vol. 12(4), pages 576-611, September.
- Duan, Jin-Chuan & Simonato, Jean-Guy, 2001. "American option pricing under GARCH by a Markov chain approximation," Journal of Economic Dynamics and Control, Elsevier, vol. 25(11), pages 1689-1718, November.
- Zhang, Yuanyuan & Zhang, Qian & Wang, Zerong & Wang, Qi, 2024. "Option valuation via nonaffine dynamics with realized volatility," Journal of Empirical Finance, Elsevier, vol. 77(C).
- Turan Bali & Panayiotis Theodossiou, 2007. "A conditional-SGT-VaR approach with alternative GARCH models," Annals of Operations Research, Springer, vol. 151(1), pages 241-267, April.
- Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
- Vahidin Jeleskovic & Mirko Meloni & Zahid Irshad Younas, 2020. "Cryptocurrencies: A Copula Based Approach for Asymmetric Risk Marginal Allocations," MAGKS Papers on Economics 202034, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
- Panagiotidis, Theodore & Papapanagiotou, Georgios & Stengos, Thanasis, 2022.
"On the volatility of cryptocurrencies,"
Research in International Business and Finance, Elsevier, vol. 62(C).
- Thanasis Stengos & Theodore Panagiotidis & Georgios Papapanagiotou, 2022. "On the volatility of cryptocurrencies," Working Papers 2202, University of Guelph, Department of Economics and Finance.
- José Antonio Núñez-Mora & Roberto Joaquín Santillán-Salgado & Mario Iván Contreras-Valdez, 2022. "COVID Asymmetric Impact on the Risk Premium of Developed and Emerging Countries’ Stock Markets," Mathematics, MDPI, vol. 10(9), pages 1-36, April.
- Font, Begoña, 1998. "Modelización de series temporales financieras. Una recopilación," DES - Documentos de Trabajo. EstadÃstica y EconometrÃa. DS 3664, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Ding, Yashuang (Dexter), 2023. "A simple joint model for returns, volatility and volatility of volatility," Journal of Econometrics, Elsevier, vol. 232(2), pages 521-543.
- Bali, Turan G. & Mo, Hengyong & Tang, Yi, 2008. "The role of autoregressive conditional skewness and kurtosis in the estimation of conditional VaR," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 269-282, February.
- Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
- Wenjun Zhang & Jin E. Zhang, 2020. "GARCH Option Pricing Models and the Variance Risk Premium," JRFM, MDPI, vol. 13(3), pages 1-21, March.
- Duan, Jin-Chuan, 1997. "Augmented GARCH (p,q) process and its diffusion limit," Journal of Econometrics, Elsevier, vol. 79(1), pages 97-127, July.
More about this item
Keywords
Autoregressive conditional heteroskedasticity (ARCH); generalized autoregressive conditional heteroskedasticity (GARCH); market volatility; nonlinear time series; Khmaladze transform.;All these keywords.
JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ETS-2019-01-14 (Econometric Time Series)
- NEP-PAY-2019-01-14 (Payment Systems and Financial Technology)
- NEP-RMG-2019-01-14 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:90437. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.