Leveraging consumer behaviors for product recommendation: an approach based on heterogeneous network
Author
Abstract
Suggested Citation
DOI: 10.1007/s10660-020-09441-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Nan Jing & Tao Jiang & Juan Du & Vijayan Sugumaran, 2018. "Personalized recommendation based on customer preference mining and sentiment assessment from a Chinese e-commerce website," Electronic Commerce Research, Springer, vol. 18(1), pages 159-179, March.
- Qian Wang & Jijun Yu & Weiwei Deng, 2019. "An adjustable re-ranking approach for improving the individual and aggregate diversities of product recommendations," Electronic Commerce Research, Springer, vol. 19(1), pages 59-79, March.
- Lichun Zhou, 2020. "Product advertising recommendation in e-commerce based on deep learning and distributed expression," Electronic Commerce Research, Springer, vol. 20(2), pages 321-342, June.
- Jianshan Sun & Rongrong Ying & Yuanchun Jiang & Jianmin He & Zhengping Ding, 2020. "Leveraging friend and group information to improve social recommender system," Electronic Commerce Research, Springer, vol. 20(1), pages 147-172, March.
- Juheng Zhang & Selwyn Piramuthu, 2018. "Product recommendation with latent review topics," Information Systems Frontiers, Springer, vol. 20(3), pages 617-625, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Saravanan Thirumuruganathan & Soon-gyo Jung & Dianne Ramirez Robillos & Joni Salminen & Bernard J. Jansen, 2021. "Forecasting the nearly unforecastable: why aren’t airline bookings adhering to the prediction algorithm?," Electronic Commerce Research, Springer, vol. 21(1), pages 73-100, March.
- Weiwei Deng & Jian Ma, 2022. "A knowledge graph approach for recommending patents to companies," Electronic Commerce Research, Springer, vol. 22(4), pages 1435-1466, December.
- Mozhu Wang & Jianming Yao, 2023. "A reliable location design of unmanned vending machines based on customer satisfaction," Electronic Commerce Research, Springer, vol. 23(1), pages 541-575, March.
- Fan Zou & Yupeng Li & Jiahuan Huang, 2022. "Group interaction and evolution of customer reviews based on opinion dynamics towards product redesign," Electronic Commerce Research, Springer, vol. 22(4), pages 1131-1151, December.
- Robert RUSU & Constantin AVRAM, 2022. "Deep Learning Systems Integrated into the Digital Strategy of a Company Involved in e-commerce," Economics and Applied Informatics, "Dunarea de Jos" University of Galati, Faculty of Economics and Business Administration, issue 1, pages 5-10.
- Arodh Lal Karn & Rakshha Kumari Karna & Bhavana Raj Kondamudi & Girish Bagale & Denis A. Pustokhin & Irina V. Pustokhina & Sudhakar Sengan, 2023. "RETRACTED ARTICLE: Customer centric hybrid recommendation system for E-Commerce applications by integrating hybrid sentiment analysis," Electronic Commerce Research, Springer, vol. 23(1), pages 279-314, March.
- Hung-Pin Shih & Pei-Chen Sung, 2021. "Addressing the Review-Based Learning and Private Information Approaches to Foster Platform Continuance," Information Systems Frontiers, Springer, vol. 23(3), pages 649-661, June.
- Ransome Epie Bawack & Emilie Bonhoure, 2023. "Influencer is the New Recommender: insights for Theorising Social Recommender Systems," Information Systems Frontiers, Springer, vol. 25(1), pages 183-197, February.
- Qian Wang & Jijun Yu & Weiwei Deng, 2019. "An adjustable re-ranking approach for improving the individual and aggregate diversities of product recommendations," Electronic Commerce Research, Springer, vol. 19(1), pages 59-79, March.
- Aitor Goti & Leire Querejeta-Lomas & Aitor Almeida & José Gaviria de la Puerta & Diego López-de-Ipiña, 2023. "Artificial Intelligence in Business-to-Customer Fashion Retail: A Literature Review," Mathematics, MDPI, vol. 11(13), pages 1-32, June.
- Hans Weytjens & Enrico Lohmann & Martin Kleinsteuber, 2021. "Cash flow prediction: MLP and LSTM compared to ARIMA and Prophet," Electronic Commerce Research, Springer, vol. 21(2), pages 371-391, June.
- Luvai Motiwalla & Amit V. Deokar & Surendra Sarnikar & Angelika Dimoka, 2019. "Leveraging Data Analytics for Behavioral Research," Information Systems Frontiers, Springer, vol. 21(4), pages 735-742, August.
- Sarah Bayer & Henner Gimpel & Daniel Rau, 2021. "IoT-commerce - opportunities for customers through an affordance lens," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(1), pages 27-50, March.
- Peng Xie, 2022. "The Interplay Between Investor Activity on Virtual Investment Community and the Trading Dynamics: Evidence From the Bitcoin Market," Information Systems Frontiers, Springer, vol. 24(4), pages 1287-1303, August.
- Ali M Ahmed Al-Sabaawi & Hacer Karacan & Yusuf Erkan Yenice, 2020. "Exploiting implicit social relationships via dimension reduction to improve recommendation system performance," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-18, April.
- Lifeng He & Dongmei Han & Xiaohang Zhou & Zheng Qu, 2020. "The Voice of Drug Consumers: Online Textual Review Analysis Using Structural Topic Model," IJERPH, MDPI, vol. 17(10), pages 1-18, May.
- Miao, Ruomu & Li, Benqian, 2022. "A user-portraits-based recommendation algorithm for traditional short video industry and security management of user privacy in social networks," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
- Guo Li & Na Li, 2019. "Customs classification for cross-border e-commerce based on text-image adaptive convolutional neural network," Electronic Commerce Research, Springer, vol. 19(4), pages 779-800, December.
- Jaewoong Choi & Jiho Lee & Janghyeok Yoon & Sion Jang & Jaeyoung Kim & Sungchul Choi, 2022. "A two-stage deep learning-based system for patent citation recommendation," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6615-6636, November.
- Shalak Mendon & Pankaj Dutta & Abhishek Behl & Stefan Lessmann, 2021. "A Hybrid Approach of Machine Learning and Lexicons to Sentiment Analysis: Enhanced Insights from Twitter Data of Natural Disasters," Information Systems Frontiers, Springer, vol. 23(5), pages 1145-1168, September.
More about this item
Keywords
Product recommendation; Recommender system; Consumer behavior; Heterogeneous network; Electronic commerce;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:elcore:v:22:y:2022:i:4:d:10.1007_s10660-020-09441-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.