IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v33y2021i1p300-318.html
   My bibliography  Save this article

Integrating Individual and Aggregate Diversity in Top- N Recommendation

Author

Listed:
  • Ethem Çanakoğlu

    (Department of Industrial Engineering, Bahçeşehir University, 34353 Istanbul, Turkey;)

  • İbrahim Muter

    (School of Management, University of Bath, Bath BA2 7AY, United Kingdom;)

  • Tevfik Aytekin

    (Department of Computer Engineering, Bahçeşehir University, 34353 Istanbul, Turkey)

Abstract

Recommender systems have become one of the main components of web technologies that help people to cope with information overload. Based on the analysis of past user behavior, these systems filter items according to users’ likes and interests. Two of the most important metrics used to analyze the performance of these systems are the accuracy and diversity of the recommendation lists. Whereas all the efforts exerted in the prediction of the user interests aim at maximizing the former, the latter emerges in various forms, such as diversity in the lists across all user recommendation lists, referred to as aggregate diversity , and diversity in the lists of individuals, known as individual diversity . In this paper, we tackle the combination of these three objectives and justify this approach by showing through experiments that handling these objectives in pairs does not yield satisfactory results in the third one. To that end, we develop a mathematical model that is formulated using multiobjective optimization approaches. To cope with the intractability of this nonlinear integer programming model, its special structure is exploited by a decomposition technique. For the solution of the resulting formulation, we propose an iterative framework that is composed of a clique-generating genetic algorithm, a constructive heuristic, and an improvement heuristic. The former is designed to incorporate all objective functions into the generated cliques and specifically impose a certain level of individual diversity, whereas the latter chooses one clique for each user such that the desired aggregate diversity level is fulfilled. We conduct experiments on three data sets and show that the proposed modeling approach successfully handles all objectives according to the needs of the system and that the proposed methodology is capable of yielding good upper bounds.

Suggested Citation

  • Ethem Çanakoğlu & İbrahim Muter & Tevfik Aytekin, 2021. "Integrating Individual and Aggregate Diversity in Top- N Recommendation," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 300-318, January.
  • Handle: RePEc:inm:orijoc:v:33:y:2021:i:1:p:300-318
    DOI: 10.1287/ijoc.2019.0952
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/ijoc.2019.0952
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2019.0952?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. George B. Dantzig & Philip Wolfe, 1960. "Decomposition Principle for Linear Programs," Operations Research, INFORMS, vol. 8(1), pages 101-111, February.
    2. Gediminas Adomavicius & YoungOk Kwon, 2014. "Optimization-Based Approaches for Maximizing Aggregate Recommendation Diversity," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 351-369, May.
    3. Ibrahim Muter & Tevfik Aytekin, 2017. "Incorporating Aggregate Diversity in Recommender Systems Using Scalable Optimization Approaches," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 405-421, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ibrahim Muter & Tevfik Aytekin, 2017. "Incorporating Aggregate Diversity in Recommender Systems Using Scalable Optimization Approaches," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 405-421, August.
    2. Xuan Bi & Gediminas Adomavicius & William Li & Annie Qu, 2022. "Improving Sales Forecasting Accuracy: A Tensor Factorization Approach with Demand Awareness," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1644-1660, May.
    3. Qian Wang & Jijun Yu & Weiwei Deng, 2019. "An adjustable re-ranking approach for improving the individual and aggregate diversities of product recommendations," Electronic Commerce Research, Springer, vol. 19(1), pages 59-79, March.
    4. Lawrence Bunnell & Kweku-Muata Osei-Bryson & Victoria Y. Yoon, 0. "RecSys Issues Ontology: A Knowledge Classification of Issues for Recommender Systems Researchers," Information Systems Frontiers, Springer, vol. 0, pages 1-42.
    5. A. Ruszczynski, 1993. "Regularized Decomposition of Stochastic Programs: Algorithmic Techniques and Numerical Results," Working Papers wp93021, International Institute for Applied Systems Analysis.
    6. Ogbe, Emmanuel & Li, Xiang, 2017. "A new cross decomposition method for stochastic mixed-integer linear programming," European Journal of Operational Research, Elsevier, vol. 256(2), pages 487-499.
    7. Sankaran, Jayaram K., 1995. "Column generation applied to linear programs in course registration," European Journal of Operational Research, Elsevier, vol. 87(2), pages 328-342, December.
    8. Metrane, Abdelmoutalib & Soumis, François & Elhallaoui, Issmail, 2010. "Column generation decomposition with the degenerate constraints in the subproblem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 37-44, November.
    9. Belanger, Nicolas & Desaulniers, Guy & Soumis, Francois & Desrosiers, Jacques, 2006. "Periodic airline fleet assignment with time windows, spacing constraints, and time dependent revenues," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1754-1766, December.
    10. Williams, R. Lynn & Dillion, Carl R. & McCarl, Bruce A., 1992. "An Economic Investigation of Edwards Aquifer Water Use Tradeoffs," WAEA/ WFEA Conference Archive (1929-1995) 321395, Western Agricultural Economics Association.
    11. François Clautiaux & Cláudio Alves & José Valério de Carvalho & Jürgen Rietz, 2011. "New Stabilization Procedures for the Cutting Stock Problem," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 530-545, November.
    12. Omid Shahvari & Rasaratnam Logendran & Madjid Tavana, 2022. "An efficient model-based branch-and-price algorithm for unrelated-parallel machine batching and scheduling problems," Journal of Scheduling, Springer, vol. 25(5), pages 589-621, October.
    13. Melanie Erhard, 2021. "Flexible staffing of physicians with column generation," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 212-252, March.
    14. Thomas W. M. Vossen & Dan Zhang, 2015. "Reductions of Approximate Linear Programs for Network Revenue Management," Operations Research, INFORMS, vol. 63(6), pages 1352-1371, December.
    15. Ternoy, Jacques Emmanuel, 1969. "Cooperation and economic efficiency," ISU General Staff Papers 196901010800004786, Iowa State University, Department of Economics.
    16. Han, Jialin & Zhang, Jiaxiang & Guo, Haoyue & Zhang, Ning, 2024. "Optimizing location-routing and demand allocation in the household waste collection system using a branch-and-price algorithm," European Journal of Operational Research, Elsevier, vol. 316(3), pages 958-975.
    17. Canca, David & Barrena, Eva, 2018. "The integrated rolling stock circulation and depot location problem in railway rapid transit systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 115-138.
    18. Barry C. Smith & Ellis L. Johnson, 2006. "Robust Airline Fleet Assignment: Imposing Station Purity Using Station Decomposition," Transportation Science, INFORMS, vol. 40(4), pages 497-516, November.
    19. Mercedes Esteban-Bravo & Jose M. Vidal-Sanz & Gökhan Yildirim, 2014. "Valuing Customer Portfolios with Endogenous Mass and Direct Marketing Interventions Using a Stochastic Dynamic Programming Decomposition," Marketing Science, INFORMS, vol. 33(5), pages 621-640, September.
    20. Grunert, Tore & Sebastian, Hans-Jurgen, 2000. "Planning models for long-haul operations of postal and express shipment companies," European Journal of Operational Research, Elsevier, vol. 122(2), pages 289-309, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:33:y:2021:i:1:p:300-318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.