Bregman primal–dual first-order method and application to sparse semidefinite programming
Author
Abstract
Suggested Citation
DOI: 10.1007/s10589-021-00339-7
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Laurent Condat, 2013. "A Primal–Dual Splitting Method for Convex Optimization Involving Lipschitzian, Proximable and Linear Composite Terms," Journal of Optimization Theory and Applications, Springer, vol. 158(2), pages 460-479, August.
- Jonathan Eckstein, 1993. "Nonlinear Proximal Point Algorithms Using Bregman Functions, with Applications to Convex Programming," Mathematics of Operations Research, INFORMS, vol. 18(1), pages 202-226, February.
- Yurii Nesterov, 2018. "Lectures on Convex Optimization," Springer Optimization and Its Applications, Springer, edition 2, number 978-3-319-91578-4, June.
- Spyridon Pougkakiotis & Jacek Gondzio, 2021. "An interior point-proximal method of multipliers for convex quadratic programming," Computational Optimization and Applications, Springer, vol. 78(2), pages 307-351, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xin Jiang & Lieven Vandenberghe, 2023. "Bregman Three-Operator Splitting Methods," Journal of Optimization Theory and Applications, Springer, vol. 196(3), pages 936-972, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xin Jiang & Lieven Vandenberghe, 2023. "Bregman Three-Operator Splitting Methods," Journal of Optimization Theory and Applications, Springer, vol. 196(3), pages 936-972, March.
- Yunda Dong, 2021. "Weak convergence of an extended splitting method for monotone inclusions," Journal of Global Optimization, Springer, vol. 79(1), pages 257-277, January.
- Shota Takahashi & Mituhiro Fukuda & Mirai Tanaka, 2022. "New Bregman proximal type algorithms for solving DC optimization problems," Computational Optimization and Applications, Springer, vol. 83(3), pages 893-931, December.
- A. Scagliotti & P. Colli Franzone, 2022. "A piecewise conservative method for unconstrained convex optimization," Computational Optimization and Applications, Springer, vol. 81(1), pages 251-288, January.
- Silvia Berra & Alessandro Torraca & Federico Benvenuto & Sara Sommariva, 2024. "Combined Newton-Gradient Method for Constrained Root-Finding in Chemical Reaction Networks," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 404-427, January.
- Puya Latafat & Panagiotis Patrinos, 2017. "Asymmetric forward–backward–adjoint splitting for solving monotone inclusions involving three operators," Computational Optimization and Applications, Springer, vol. 68(1), pages 57-93, September.
- J. X. Cruz Neto & O. P. Ferreira & P. R. Oliveira & R. C. M. Silva, 2008. "Central Paths in Semidefinite Programming, Generalized Proximal-Point Method and Cauchy Trajectories in Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 227-242, November.
- Stefano Cipolla & Jacek Gondzio, 2023. "Proximal Stabilized Interior Point Methods and Low-Frequency-Update Preconditioning Techniques," Journal of Optimization Theory and Applications, Springer, vol. 197(3), pages 1061-1103, June.
- Bingsheng He & Li-Zhi Liao & Xiang Wang, 2012. "Proximal-like contraction methods for monotone variational inequalities in a unified framework I: Effective quadruplet and primary methods," Computational Optimization and Applications, Springer, vol. 51(2), pages 649-679, March.
- J. X. Cruz Neto & P. R. Oliveira & A. Soubeyran & J. C. O. Souza, 2020.
"A generalized proximal linearized algorithm for DC functions with application to the optimal size of the firm problem,"
Annals of Operations Research, Springer, vol. 289(2), pages 313-339, June.
- J. Cruz Neto & P. Oliveira & Antoine Soubeyran & J. Souza, 2020. "A generalized proximal linearized algorithm for DC functions with application to the optimal size of the firm problem," Post-Print hal-01985336, HAL.
- Papa Quiroz, E.A. & Roberto Oliveira, P., 2012. "An extension of proximal methods for quasiconvex minimization on the nonnegative orthant," European Journal of Operational Research, Elsevier, vol. 216(1), pages 26-32.
- Regina Sandra Burachik & B. F. Svaiter, 2001. "A Relative Error Tolerance for a Family of Generalized Proximal Point Methods," Mathematics of Operations Research, INFORMS, vol. 26(4), pages 816-831, November.
- Huiyi Cao & Kamil A. Khan, 2023. "General convex relaxations of implicit functions and inverse functions," Journal of Global Optimization, Springer, vol. 86(3), pages 545-572, July.
- Cécile Bastidon & Myriam Bontonou & Pierre Borgnat & Pablo Jensen & Patrice Abry & Antoine Parent, 2024. "Learning smooth graphs with sparse temporal variations to explore long-term financial trends," Post-Print hal-04731912, HAL.
- Radu Ioan Bot & Dang-Khoa Nguyen, 2020. "The Proximal Alternating Direction Method of Multipliers in the Nonconvex Setting: Convergence Analysis and Rates," Mathematics of Operations Research, INFORMS, vol. 45(2), pages 682-712, May.
- Julian Rasch & Antonin Chambolle, 2020. "Inexact first-order primal–dual algorithms," Computational Optimization and Applications, Springer, vol. 76(2), pages 381-430, June.
- Francisco García Riesgo & Sergio Luis Suárez Gómez & Enrique Díez Alonso & Carlos González-Gutiérrez & Jesús Daniel Santos, 2021. "Fully Convolutional Approaches for Numerical Approximation of Turbulent Phases in Solar Adaptive Optics," Mathematics, MDPI, vol. 9(14), pages 1-20, July.
- Pavel Shcherbakov & Mingyue Ding & Ming Yuchi, 2021. "Random Sampling Many-Dimensional Sets Arising in Control," Mathematics, MDPI, vol. 9(5), pages 1-16, March.
- Sun, Shilin & Wang, Tianyang & Yang, Hongxing & Chu, Fulei, 2022. "Damage identification of wind turbine blades using an adaptive method for compressive beamforming based on the generalized minimax-concave penalty function," Renewable Energy, Elsevier, vol. 181(C), pages 59-70.
- Fu, Penghui & Tan, Zhiqiang, 2024. "Block-wise primal-dual algorithms for large-scale doubly penalized ANOVA modeling," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
More about this item
Keywords
Primal–dual algorithm; First-order algorithm; Semidefinite programming; Bregman divergence;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:81:y:2022:i:1:d:10.1007_s10589-021-00339-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.