IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v197y2023i2d10.1007_s10957-023-02176-6.html
   My bibliography  Save this article

Smoothing Accelerated Proximal Gradient Method with Fast Convergence Rate for Nonsmooth Convex Optimization Beyond Differentiability

Author

Listed:
  • Fan Wu

    (Harbin Institute of Technology)

  • Wei Bian

    (Harbin Institute of Technology
    Harbin Institute of Technology)

Abstract

We propose a smoothing accelerated proximal gradient (SAPG) method with fast convergence rate for finding a minimizer of a decomposable nonsmooth convex function over a closed convex set. The proposed algorithm combines the smoothing method with the proximal gradient algorithm with extrapolation $$\frac{k-1}{k+\alpha -1}$$ k - 1 k + α - 1 and $$\alpha > 3$$ α > 3 . The updating rule of smoothing parameter $$\mu _k$$ μ k is a smart scheme and guarantees the global convergence rate of $$o(\ln ^{\sigma }k/k)$$ o ( ln σ k / k ) with $$\sigma \in (\frac{1}{2},1]$$ σ ∈ ( 1 2 , 1 ] on the objective function values. Moreover, we prove that the iterates sequence is convergent to an optimal solution of the problem. We then introduce an error term in the SAPG algorithm to get the inexact smoothing accelerated proximal gradient algorithm. And we obtain the same convergence results as the SAPG algorithm under the summability condition on the errors. Finally, numerical experiments show the effectiveness and efficiency of the proposed algorithm.

Suggested Citation

  • Fan Wu & Wei Bian, 2023. "Smoothing Accelerated Proximal Gradient Method with Fast Convergence Rate for Nonsmooth Convex Optimization Beyond Differentiability," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 539-572, May.
  • Handle: RePEc:spr:joptap:v:197:y:2023:i:2:d:10.1007_s10957-023-02176-6
    DOI: 10.1007/s10957-023-02176-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-023-02176-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-023-02176-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Radu Boţ & Christopher Hendrich, 2015. "A variable smoothing algorithm for solving convex optimization problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 124-150, April.
    2. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    3. Hedy Attouch & Alexandre Cabot, 2020. "Convergence rate of a relaxed inertial proximal algorithm for convex minimization," Post-Print hal-02415789, HAL.
    4. Quoc Tran-Dinh, 2017. "Adaptive smoothing algorithms for nonsmooth composite convex minimization," Computational Optimization and Applications, Springer, vol. 66(3), pages 425-451, April.
    5. Samid Hoda & Andrew Gilpin & Javier Peña & Tuomas Sandholm, 2010. "Smoothing Techniques for Computing Nash Equilibria of Sequential Games," Mathematics of Operations Research, INFORMS, vol. 35(2), pages 494-512, May.
    6. Heinz H. Bauschke & Jérôme Bolte & Marc Teboulle, 2017. "A Descent Lemma Beyond Lipschitz Gradient Continuity: First-Order Methods Revisited and Applications," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 330-348, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Guan, Wei & Gray, Alexander, 2013. "Sparse high-dimensional fractional-norm support vector machine via DC programming," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 136-148.
    3. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    4. Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015. "High dimensional generalized empirical likelihood for moment restrictions with dependent data," Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
    5. Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    6. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Emmanouil Androulakis & Christos Koukouvinos & Kalliopi Mylona & Filia Vonta, 2010. "A real survival analysis application via variable selection methods for Cox's proportional hazards model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1399-1406.
    8. Meng An & Haixiang Zhang, 2023. "High-Dimensional Mediation Analysis for Time-to-Event Outcomes with Additive Hazards Model," Mathematics, MDPI, vol. 11(24), pages 1-11, December.
    9. Singh, Rakhi & Stufken, John, 2024. "Factor selection in screening experiments by aggregation over random models," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
    10. Hao Wang & Hao Zeng & Jiashan Wang, 2022. "An extrapolated iteratively reweighted $$\ell _1$$ ℓ 1 method with complexity analysis," Computational Optimization and Applications, Springer, vol. 83(3), pages 967-997, December.
    11. Koki Momoki & Takuma Yoshida, 2024. "Hypothesis testing for varying coefficient models in tail index regression," Statistical Papers, Springer, vol. 65(6), pages 3821-3852, August.
    12. Lili Pan & Ziyan Luo & Naihua Xiu, 2017. "Restricted Robinson Constraint Qualification and Optimality for Cardinality-Constrained Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 104-118, October.
    13. Okhrin, Ostap & Ristig, Alexander & Sheen, Jeffrey R. & Trück, Stefan, 2015. "Conditional systemic risk with penalized copula," SFB 649 Discussion Papers 2015-038, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    14. Michael Hintermüller & Tao Wu, 2014. "A superlinearly convergent R-regularized Newton scheme for variational models with concave sparsity-promoting priors," Computational Optimization and Applications, Springer, vol. 57(1), pages 1-25, January.
    15. Anastasiou, Andreas & Cribben, Ivor & Fryzlewicz, Piotr, 2022. "Cross-covariance isolate detect: a new change-point method for estimating dynamic functional connectivity," LSE Research Online Documents on Economics 112148, London School of Economics and Political Science, LSE Library.
    16. Ni, Xiao & Zhang, Hao Helen & Zhang, Daowen, 2009. "Automatic model selection for partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2100-2111, October.
    17. Shota Takahashi & Mituhiro Fukuda & Mirai Tanaka, 2022. "New Bregman proximal type algorithms for solving DC optimization problems," Computational Optimization and Applications, Springer, vol. 83(3), pages 893-931, December.
    18. Jun Yan & Jian Huang, 2012. "Model Selection for Cox Models with Time-Varying Coefficients," Biometrics, The International Biometric Society, vol. 68(2), pages 419-428, June.
    19. Gerhard Tutz & Moritz Berger, 2018. "Tree-structured modelling of categorical predictors in generalized additive regression," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 737-758, September.
    20. Min Tao & Jiang-Ning Li, 2023. "Error Bound and Isocost Imply Linear Convergence of DCA-Based Algorithms to D-Stationarity," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 205-232, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:197:y:2023:i:2:d:10.1007_s10957-023-02176-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.