IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v84y2023i3d10.1007_s10589-022-00446-z.html
   My bibliography  Save this article

A smoothing proximal gradient algorithm with extrapolation for the relaxation of $${\ell_{0}}$$ ℓ 0 regularization problem

Author

Listed:
  • Jie Zhang

    (Sichuan University)

  • Xinmin Yang

    (Chongqing Normal University)

  • Gaoxi Li

    (Chongqing Technology and Business University)

  • Ke Zhang

    (National Center for Applied Mathematics in Chongqing)

Abstract

In this paper, we consider the exact continuous relaxation model of $${\ell_{0}}$$ ℓ 0 regularization problem, which was given by Bian and Chen (SIAM J Numer Anal 58:858–883, 2020) and propose a smoothing proximal gradient algorithm with extrapolation (SPGE) for this kind of problems. Under a general choice of extrapolation parameter, it is proved that all the accumulation points have a common support set, and the ability of the SPGE algorithm to identify the zero entries of the accumulation point within finite iterations is available. We show that any accumulation point of the sequence generated by the SPGE algorithm is a lifted stationary point of the relaxation model. Moreover, a convergence rate concerning proximal residual is established. Finally, we conduct three numerical experiments to illustrate the efficiency of the SPGE algorithm compared with the smoothing proximal gradient (SPG) algorithm proposed by Bian and Chen (2020).

Suggested Citation

  • Jie Zhang & Xinmin Yang & Gaoxi Li & Ke Zhang, 2023. "A smoothing proximal gradient algorithm with extrapolation for the relaxation of $${\ell_{0}}$$ ℓ 0 regularization problem," Computational Optimization and Applications, Springer, vol. 84(3), pages 737-760, April.
  • Handle: RePEc:spr:coopap:v:84:y:2023:i:3:d:10.1007_s10589-022-00446-z
    DOI: 10.1007/s10589-022-00446-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-022-00446-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-022-00446-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. NESTEROV, Yurii, 2013. "Gradient methods for minimizing composite functions," LIDAM Reprints CORE 2510, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. NESTEROV, Yurii, 2007. "Smoothing technique and its applications in semidefinite optimization," LIDAM Reprints CORE 1951, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Ming Hu & Masao Fukushima, 2012. "Smoothing approach to Nash equilibrium formulations for a class of equilibrium problems with shared complementarity constraints," Computational Optimization and Applications, Springer, vol. 52(2), pages 415-437, June.
    4. Jong-Shi Pang & Meisam Razaviyayn & Alberth Alvarado, 2017. "Computing B-Stationary Points of Nonsmooth DC Programs," Mathematics of Operations Research, INFORMS, vol. 42(1), pages 95-118, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren Jiang & Zhifeng Ji & Wuling Mo & Suhua Wang & Mingjun Zhang & Wei Yin & Zhen Wang & Yaping Lin & Xueke Wang & Umar Ashraf, 2022. "A Novel Method of Deep Learning for Shear Velocity Prediction in a Tight Sandstone Reservoir," Energies, MDPI, vol. 15(19), pages 1-20, September.
    2. Masaru Ito, 2016. "New results on subgradient methods for strongly convex optimization problems with a unified analysis," Computational Optimization and Applications, Springer, vol. 65(1), pages 127-172, September.
    3. TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Discussion Papers CORE 2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Dimitris Bertsimas & Ryan Cory-Wright, 2022. "A Scalable Algorithm for Sparse Portfolio Selection," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1489-1511, May.
    5. Weibin Mo & Yufeng Liu, 2022. "Efficient learning of optimal individualized treatment rules for heteroscedastic or misspecified treatment‐free effect models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 440-472, April.
    6. Liu, Yulan & Bi, Shujun, 2019. "Error bounds for non-polyhedral convex optimization and applications to linear convergence of FDM and PGM," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 418-435.
    7. Sun, Shilin & Wang, Tianyang & Yang, Hongxing & Chu, Fulei, 2022. "Damage identification of wind turbine blades using an adaptive method for compressive beamforming based on the generalized minimax-concave penalty function," Renewable Energy, Elsevier, vol. 181(C), pages 59-70.
    8. Welington Oliveira, 2019. "Proximal bundle methods for nonsmooth DC programming," Journal of Global Optimization, Springer, vol. 75(2), pages 523-563, October.
    9. Saif Eddin Jabari & Nikolaos M. Freris & Deepthi Mary Dilip, 2020. "Sparse Travel Time Estimation from Streaming Data," Transportation Science, INFORMS, vol. 54(1), pages 1-20, January.
    10. Vasile L. Basescu & John E. Mitchell, 2008. "An Analytic Center Cutting Plane Approach for Conic Programming," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 529-551, August.
    11. Ching-pei Lee & Stephen J. Wright, 2019. "Inexact Successive quadratic approximation for regularized optimization," Computational Optimization and Applications, Springer, vol. 72(3), pages 641-674, April.
    12. W. Ackooij & S. Demassey & P. Javal & H. Morais & W. Oliveira & B. Swaminathan, 2021. "A bundle method for nonsmooth DC programming with application to chance-constrained problems," Computational Optimization and Applications, Springer, vol. 78(2), pages 451-490, March.
    13. Le Thi Khanh Hien & Cuong V. Nguyen & Huan Xu & Canyi Lu & Jiashi Feng, 2019. "Accelerated Randomized Mirror Descent Algorithms for Composite Non-strongly Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 181(2), pages 541-566, May.
    14. Ya-Feng Liu & Xin Liu & Shiqian Ma, 2019. "On the Nonergodic Convergence Rate of an Inexact Augmented Lagrangian Framework for Composite Convex Programming," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 632-650, May.
    15. Reza Eghbali & Maryam Fazel, 2017. "Decomposable norm minimization with proximal-gradient homotopy algorithm," Computational Optimization and Applications, Springer, vol. 66(2), pages 345-381, March.
    16. NESTEROV, Yu. & SHIKHMAN, Vladimir, 2014. "Convergent subgradient methods for nonsmooth convex minimization," LIDAM Discussion Papers CORE 2014005, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    17. Christian Kanzow & Theresa Lechner, 2021. "Globalized inexact proximal Newton-type methods for nonconvex composite functions," Computational Optimization and Applications, Springer, vol. 78(2), pages 377-410, March.
    18. R. Díaz Millán & M. Pentón Machado, 2019. "Inexact proximal $$\epsilon $$ϵ-subgradient methods for composite convex optimization problems," Journal of Global Optimization, Springer, vol. 75(4), pages 1029-1060, December.
    19. Alexandre d'Aspremont & Noureddine El Karoui, 2013. "Weak Recovery Conditions from Graph Partitioning Bounds and Order Statistics," Mathematics of Operations Research, INFORMS, vol. 38(2), pages 228-247, May.
    20. Weiwei Kong & Renato D. C. Monteiro, 2022. "Accelerated inexact composite gradient methods for nonconvex spectral optimization problems," Computational Optimization and Applications, Springer, vol. 82(3), pages 673-715, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:84:y:2023:i:3:d:10.1007_s10589-022-00446-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.