IDEAS home Printed from https://ideas.repec.org/p/cor/louvrp/1168.html
   My bibliography  Save this paper

An interior-point method for generalized linear-fractional programming

Author

Listed:
  • NESTEROV, Y.
  • NEMIROVSKII, A.

Abstract

No abstract is available for this item.

Suggested Citation

  • Nesterov, Y. & Nemirovskii, A., 1995. "An interior-point method for generalized linear-fractional programming," LIDAM Reprints CORE 1168, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvrp:1168
    DOI: 10.1007/BF01585557
    Note: In : Mathematical Programming, 69, 177-204, 1995
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hladík, Milan & Sitarz, Sebastian, 2013. "Maximal and supremal tolerances in multiobjective linear programming," European Journal of Operational Research, Elsevier, vol. 228(1), pages 93-101.
    2. Illes, Tibor & Szirmai, Akos & Terlaky, Tamas, 1999. "The finite criss-cross method for hyperbolic programming," European Journal of Operational Research, Elsevier, vol. 114(1), pages 198-214, April.
    3. Bo Zhang & YueLin Gao & Xia Liu & XiaoLi Huang, 2022. "An Outcome-Space-Based Branch-and-Bound Algorithm for a Class of Sum-of-Fractions Problems," Journal of Optimization Theory and Applications, Springer, vol. 192(3), pages 830-855, March.
    4. T Drezner & Z Drezner & P Kalczynski, 2011. "A cover-based competitive location model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 100-113, January.
    5. Milan Hladík & Michal Černý & Jaromír Antoch, 2020. "EIV regression with bounded errors in data: total ‘least squares’ with Chebyshev norm," Statistical Papers, Springer, vol. 61(1), pages 279-301, February.
    6. Hou, Zhisong & Liu, Sanyang, 2023. "A spatial branch-reduction-bound algorithm for solving generalized linear fractional problems globally," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    7. Hladík, Milan, 2016. "Robust optimal solutions in interval linear programming with forall-exists quantifiers," European Journal of Operational Research, Elsevier, vol. 254(3), pages 705-714.
    8. Hladík, Milan, 2010. "Generalized linear fractional programming under interval uncertainty," European Journal of Operational Research, Elsevier, vol. 205(1), pages 42-46, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvrp:1168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.