IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v72y2019i1d10.1007_s10589-018-0038-7.html
   My bibliography  Save this article

A globally convergent Levenberg–Marquardt method for equality-constrained optimization

Author

Listed:
  • A. F. Izmailov

    (Lomonosov Moscow State University, MSU
    RUDN University)

  • M. V. Solodov

    (IMPA – Instituto de Matemática Pura e Aplicada)

  • E. I. Uskov

    (Derzhavin Tambov State University, TSU)

Abstract

It is well-known that the Levenberg–Marquardt method is a good choice for solving nonlinear equations, especially in the cases of singular/nonisolated solutions. We first exhibit some numerical experiments with local convergence, showing that this method for “generic” equations actually also works very well when applied to the specific case of the Lagrange optimality system, i.e., to the equation given by the first-order optimality conditions for equality-constrained optimization. In particular, it appears to outperform not only the basic Newton method applied to such systems, but also its modifications supplied with dual stabilization mechanisms, intended specially for tackling problems with nonunique Lagrange multipliers. The usual globalizations of the Levenberg–Marquardt method are based on linesearch for the squared Euclidean residual of the equation being solved. In the case of the Lagrange optimality system, this residual does not involve the objective function of the underlying optimization problem (only its derivative), and in particular, the resulting globalization scheme has no preference for converging to minima versus maxima, or to any other stationary point. We thus develop a special globalization of the Levenberg–Marquardt method when it is applied to the Lagrange optimality system, based on linesearch for a smooth exact penalty function of the optimization problem, which in particular involves the objective function of the problem. The algorithm is shown to have appropriate global convergence properties, preserving also fast local convergence rate under weak assumptions.

Suggested Citation

  • A. F. Izmailov & M. V. Solodov & E. I. Uskov, 2019. "A globally convergent Levenberg–Marquardt method for equality-constrained optimization," Computational Optimization and Applications, Springer, vol. 72(1), pages 215-239, January.
  • Handle: RePEc:spr:coopap:v:72:y:2019:i:1:d:10.1007_s10589-018-0038-7
    DOI: 10.1007/s10589-018-0038-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-018-0038-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-018-0038-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. F. Izmailov & E. I. Uskov, 2017. "Subspace-stabilized sequential quadratic programming," Computational Optimization and Applications, Springer, vol. 67(1), pages 129-154, May.
    2. Andreas Fischer & Markus Herrich & Alexey Izmailov & Mikhail Solodov, 2016. "Convergence conditions for Newton-type methods applied to complementarity systems with nonisolated solutions," Computational Optimization and Applications, Springer, vol. 63(2), pages 425-459, March.
    3. A. Izmailov & M. Solodov & E. Uskov, 2015. "Combining stabilized SQP with the augmented Lagrangian algorithm," Computational Optimization and Applications, Springer, vol. 62(2), pages 405-429, November.
    4. D. Fernández & E. Pilotta & G. Torres, 2013. "An inexact restoration strategy for the globalization of the sSQP method," Computational Optimization and Applications, Springer, vol. 54(3), pages 595-617, April.
    5. A. Izmailov & M. Solodov, 2015. "Rejoinder on: Critical Lagrange multipliers: what we currently know about them, how they spoil our lives, and what we can do about it," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 48-52, April.
    6. Francisco Facchinei & Andreas Fischer & Markus Herrich, 2013. "A family of Newton methods for nonsmooth constrained systems with nonisolated solutions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(3), pages 433-443, June.
    7. A. Izmailov & M. Solodov, 2015. "Critical Lagrange multipliers: what we currently know about them, how they spoil our lives, and what we can do about it," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 1-26, April.
    8. A. F. Izmailov & M. V. Solodov & E. I. Uskov, 2016. "Globalizing Stabilized Sequential Quadratic Programming Method by Smooth Primal-Dual Exact Penalty Function," Journal of Optimization Theory and Applications, Springer, vol. 169(1), pages 148-178, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. F. Izmailov & E. I. Uskov, 2017. "Subspace-stabilized sequential quadratic programming," Computational Optimization and Applications, Springer, vol. 67(1), pages 129-154, May.
    2. A. F. Izmailov & M. V. Solodov & E. I. Uskov, 2016. "Globalizing Stabilized Sequential Quadratic Programming Method by Smooth Primal-Dual Exact Penalty Function," Journal of Optimization Theory and Applications, Springer, vol. 169(1), pages 148-178, April.
    3. Songqiang Qiu, 2019. "Convergence of a stabilized SQP method for equality constrained optimization," Computational Optimization and Applications, Springer, vol. 73(3), pages 957-996, July.
    4. A. F. Izmailov, 2021. "Accelerating convergence of a globalized sequential quadratic programming method to critical Lagrange multipliers," Computational Optimization and Applications, Springer, vol. 80(3), pages 943-978, December.
    5. Oliver Stein & Nathan Sudermann-Merx, 2016. "The Cone Condition and Nonsmoothness in Linear Generalized Nash Games," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 687-709, August.
    6. A. Fischer & M. Herrich & A. F. Izmailov & W. Scheck & M. V. Solodov, 2018. "A globally convergent LP-Newton method for piecewise smooth constrained equations: escaping nonstationary accumulation points," Computational Optimization and Applications, Springer, vol. 69(2), pages 325-349, March.
    7. Yuya Yamakawa & Takayuki Okuno, 2022. "A stabilized sequential quadratic semidefinite programming method for degenerate nonlinear semidefinite programs," Computational Optimization and Applications, Springer, vol. 83(3), pages 1027-1064, December.
    8. A. Fischer & A. F. Izmailov & M. Jelitte, 2021. "Newton-type methods near critical solutions of piecewise smooth nonlinear equations," Computational Optimization and Applications, Springer, vol. 80(2), pages 587-615, November.
    9. Dominique Orban & Abel Soares Siqueira, 2020. "A regularization method for constrained nonlinear least squares," Computational Optimization and Applications, Springer, vol. 76(3), pages 961-989, July.
    10. Tianlei Zang & Zhengyou He & Yan Wang & Ling Fu & Zhiyu Peng & Qingquan Qian, 2017. "A Piecewise Bound Constrained Optimization for Harmonic Responsibilities Assessment under Utility Harmonic Impedance Changes," Energies, MDPI, vol. 10(7), pages 1-20, July.
    11. A. Izmailov & M. Solodov & E. Uskov, 2015. "Combining stabilized SQP with the augmented Lagrangian algorithm," Computational Optimization and Applications, Springer, vol. 62(2), pages 405-429, November.
    12. A. F. Izmailov & M. V. Solodov, 2015. "Newton-Type Methods: A Broader View," Journal of Optimization Theory and Applications, Springer, vol. 164(2), pages 577-620, February.
    13. R. Behling & A. Fischer & M. Herrich & A. Iusem & Y. Ye, 2014. "A Levenberg-Marquardt method with approximate projections," Computational Optimization and Applications, Springer, vol. 59(1), pages 5-26, October.
    14. Andreas Fischer & Alexey F. Izmailov & Mikhail V. Solodov, 2019. "Local Attractors of Newton-Type Methods for Constrained Equations and Complementarity Problems with Nonisolated Solutions," Journal of Optimization Theory and Applications, Springer, vol. 180(1), pages 140-169, January.
    15. Jun Pei & Zorica Dražić & Milan Dražić & Nenad Mladenović & Panos M. Pardalos, 2019. "Continuous Variable Neighborhood Search (C-VNS) for Solving Systems of Nonlinear Equations," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 235-250, April.
    16. Naoki Marumo & Takayuki Okuno & Akiko Takeda, 2023. "Majorization-minimization-based Levenberg–Marquardt method for constrained nonlinear least squares," Computational Optimization and Applications, Springer, vol. 84(3), pages 833-874, April.
    17. El Houcine Bergou & Youssef Diouane & Vyacheslav Kungurtsev, 2020. "Convergence and Complexity Analysis of a Levenberg–Marquardt Algorithm for Inverse Problems," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 927-944, June.
    18. E. G. Birgin & R. D. Lobato & J. M. Martínez, 2017. "A nonlinear programming model with implicit variables for packing ellipsoids," Journal of Global Optimization, Springer, vol. 68(3), pages 467-499, July.
    19. Francisco J. Aragón Artacho & Rubén Campoy & Veit Elser, 2020. "An enhanced formulation for solving graph coloring problems with the Douglas–Rachford algorithm," Journal of Global Optimization, Springer, vol. 77(2), pages 383-403, June.
    20. María de los Ángeles Martínez & Damián Fernández, 2019. "On the Local and Superlinear Convergence of a Secant Modified Linear-Programming-Newton Method," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 993-1010, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:72:y:2019:i:1:d:10.1007_s10589-018-0038-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.