IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v59y2014i1p5-26.html
   My bibliography  Save this article

A Levenberg-Marquardt method with approximate projections

Author

Listed:
  • R. Behling
  • A. Fischer
  • M. Herrich
  • A. Iusem
  • Y. Ye

Abstract

The projected Levenberg-Marquardt method for the solution of a system of equations with convex constraints is known to converge locally quadratically to a possibly nonisolated solution if a certain error bound condition holds. This condition turns out to be quite strong since it implies that the solution sets of the constrained and of the unconstrained system are locally the same. Under a pair of more reasonable error bound conditions this paper proves R-linear convergence of a Levenberg-Marquardt method with approximate projections. In this way, computationally expensive projections can be avoided. The new method is also applicable if there are nonsmooth constraints having subgradients. Moreover, the projected Levenberg-Marquardt method is a special case of the new method and shares its R-linear convergence. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • R. Behling & A. Fischer & M. Herrich & A. Iusem & Y. Ye, 2014. "A Levenberg-Marquardt method with approximate projections," Computational Optimization and Applications, Springer, vol. 59(1), pages 5-26, October.
  • Handle: RePEc:spr:coopap:v:59:y:2014:i:1:p:5-26
    DOI: 10.1007/s10589-013-9573-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-013-9573-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-013-9573-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francisco Facchinei & Andreas Fischer & Markus Herrich, 2013. "A family of Newton methods for nonsmooth constrained systems with nonisolated solutions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(3), pages 433-443, June.
    2. Masao Fukushima, 1983. "An Outer Approximation Algorithm for Solving General Convex Programs," Operations Research, INFORMS, vol. 31(1), pages 101-113, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabiana R. Oliveira & Orizon P. Ferreira & Gilson N. Silva, 2019. "Newton’s method with feasible inexact projections for solving constrained generalized equations," Computational Optimization and Applications, Springer, vol. 72(1), pages 159-177, January.
    2. Andreas Fischer & Alexey F. Izmailov & Mikhail V. Solodov, 2019. "Local Attractors of Newton-Type Methods for Constrained Equations and Complementarity Problems with Nonisolated Solutions," Journal of Optimization Theory and Applications, Springer, vol. 180(1), pages 140-169, January.
    3. Fabiana R. Oliveira & Fabrícia R. Oliveira, 2021. "A Global Newton Method for the Nonsmooth Vector Fields on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 259-273, July.
    4. Jifeng Bao & Carisa Kwok Wai Yu & Jinhua Wang & Yaohua Hu & Jen-Chih Yao, 2019. "Modified inexact Levenberg–Marquardt methods for solving nonlinear least squares problems," Computational Optimization and Applications, Springer, vol. 74(2), pages 547-582, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Fischer & M. Herrich & A. F. Izmailov & W. Scheck & M. V. Solodov, 2018. "A globally convergent LP-Newton method for piecewise smooth constrained equations: escaping nonstationary accumulation points," Computational Optimization and Applications, Springer, vol. 69(2), pages 325-349, March.
    2. Reiner Horst, 1990. "Deterministic methods in constrained global optimization: Some recent advances and new fields of application," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(4), pages 433-471, August.
    3. A. F. Izmailov & M. V. Solodov & E. I. Uskov, 2019. "A globally convergent Levenberg–Marquardt method for equality-constrained optimization," Computational Optimization and Applications, Springer, vol. 72(1), pages 215-239, January.
    4. Bello Cruz, J.Y. & Iusem, A.N., 2015. "Full convergence of an approximate projection method for nonsmooth variational inequalities," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 114(C), pages 2-13.
    5. Naoki Marumo & Takayuki Okuno & Akiko Takeda, 2023. "Majorization-minimization-based Levenberg–Marquardt method for constrained nonlinear least squares," Computational Optimization and Applications, Springer, vol. 84(3), pages 833-874, April.
    6. El Houcine Bergou & Youssef Diouane & Vyacheslav Kungurtsev, 2020. "Convergence and Complexity Analysis of a Levenberg–Marquardt Algorithm for Inverse Problems," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 927-944, June.
    7. A. Fischer & A. F. Izmailov & M. Jelitte, 2021. "Newton-type methods near critical solutions of piecewise smooth nonlinear equations," Computational Optimization and Applications, Springer, vol. 80(2), pages 587-615, November.
    8. Phan Vuong & Jean Strodiot & Van Nguyen, 2014. "Projected viscosity subgradient methods for variational inequalities with equilibrium problem constraints in Hilbert spaces," Journal of Global Optimization, Springer, vol. 59(1), pages 173-190, May.
    9. Brito, A.S. & Cruz Neto, J.X. & Santos, P.S.M. & Souza, S.S., 2017. "A relaxed projection method for solving multiobjective optimization problems," European Journal of Operational Research, Elsevier, vol. 256(1), pages 17-23.
    10. A. Fischer & A. F. Izmailov & M. V. Solodov, 2021. "Accelerating convergence of the globalized Newton method to critical solutions of nonlinear equations," Computational Optimization and Applications, Springer, vol. 78(1), pages 273-286, January.
    11. Andreas Fischer & Markus Herrich & Alexey Izmailov & Mikhail Solodov, 2016. "Convergence conditions for Newton-type methods applied to complementarity systems with nonisolated solutions," Computational Optimization and Applications, Springer, vol. 63(2), pages 425-459, March.
    12. Francisco Facchinei & Christian Kanzow & Sebastian Karl & Simone Sagratella, 2015. "The semismooth Newton method for the solution of quasi-variational inequalities," Computational Optimization and Applications, Springer, vol. 62(1), pages 85-109, September.
    13. J. Bello Cruz & A. Iusem, 2010. "Convergence of direct methods for paramonotone variational inequalities," Computational Optimization and Applications, Springer, vol. 46(2), pages 247-263, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:59:y:2014:i:1:p:5-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.