IDEAS home Printed from https://ideas.repec.org/a/spr/topjnl/v23y2015i1p1-26.html
   My bibliography  Save this article

Critical Lagrange multipliers: what we currently know about them, how they spoil our lives, and what we can do about it

Author

Listed:
  • A. Izmailov
  • M. Solodov

Abstract

We discuss a certain special subset of Lagrange multipliers, called critical, which usually exist when multipliers associated to a given solution are not unique. This kind of multipliers appear to be important for a number of reasons, some understood better, some (currently) not fully. What is clear, is that Newton and Newton-related methods have an amazingly strong tendency to generate sequences with dual components converging to critical multipliers. This is quite striking because, typically, the set of critical multipliers is “thin” (the set of noncritical ones is relatively open and dense, meaning that its closure is the whole set). Apart from mathematical curiosity to understand the phenomenon for something as classical as the Newton method, the attraction to critical multipliers is relevant computationally. This is because convergence to such multipliers is the reason for slow convergence of the Newton method in degenerate cases, as convergence to noncritical limits (if it were to happen) would have given the superlinear rate. Moreover, the attraction phenomenon shows up not only for the basic Newton method, but also for other related techniques (for example, quasi-Newton, and the linearly constrained augmented Lagrangian method). Despite clear computational evidence, proving that convergence to a critical limit must occur appears to be a challenge, at least for general problems. We outline the partial results obtained up to now. We also discuss the important role that noncritical multipliers play for stability, sensitivity, and error bounds. Finally, an important issue is dual stabilization, i.e., techniques to avoid moving along the multiplier set towards a critical one (since it leads to slow convergence). We discuss the algorithms that do the job locally, i.e., when initialized close enough to a noncritical multiplier, their dual behavior is as desired. These include the stabilized sequential quadratic programming method and the augmented Lagrangian algorithm. However, when the starting point is far, even those algorithms do not appear to provide fully satisfactory remedies. We discuss the challenges with constructing good algorithms for the degenerate case, which have to incorporate dual stabilization for fast local convergence, at an acceptable computational cost, and also be globally efficient. Copyright Sociedad de Estadística e Investigación Operativa 2015

Suggested Citation

  • A. Izmailov & M. Solodov, 2015. "Critical Lagrange multipliers: what we currently know about them, how they spoil our lives, and what we can do about it," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 1-26, April.
  • Handle: RePEc:spr:topjnl:v:23:y:2015:i:1:p:1-26
    DOI: 10.1007/s11750-015-0372-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11750-015-0372-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11750-015-0372-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Fernández & E. Pilotta & G. Torres, 2013. "An inexact restoration strategy for the globalization of the sSQP method," Computational Optimization and Applications, Springer, vol. 54(3), pages 595-617, April.
    2. A. F. Izmailov & M. V. Solodov, 2015. "Newton-Type Methods: A Broader View," Journal of Optimization Theory and Applications, Springer, vol. 164(2), pages 577-620, February.
    3. Philip Gill & Daniel Robinson, 2012. "A primal-dual augmented Lagrangian," Computational Optimization and Applications, Springer, vol. 51(1), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oliver Stein & Nathan Sudermann-Merx, 2016. "The Cone Condition and Nonsmoothness in Linear Generalized Nash Games," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 687-709, August.
    2. A. F. Izmailov & M. V. Solodov & E. I. Uskov, 2019. "A globally convergent Levenberg–Marquardt method for equality-constrained optimization," Computational Optimization and Applications, Springer, vol. 72(1), pages 215-239, January.
    3. A. F. Izmailov, 2021. "Accelerating convergence of a globalized sequential quadratic programming method to critical Lagrange multipliers," Computational Optimization and Applications, Springer, vol. 80(3), pages 943-978, December.
    4. A. F. Izmailov & E. I. Uskov, 2017. "Subspace-stabilized sequential quadratic programming," Computational Optimization and Applications, Springer, vol. 67(1), pages 129-154, May.
    5. A. F. Izmailov & M. V. Solodov & E. I. Uskov, 2016. "Globalizing Stabilized Sequential Quadratic Programming Method by Smooth Primal-Dual Exact Penalty Function," Journal of Optimization Theory and Applications, Springer, vol. 169(1), pages 148-178, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Izmailov & M. Solodov & E. Uskov, 2015. "Combining stabilized SQP with the augmented Lagrangian algorithm," Computational Optimization and Applications, Springer, vol. 62(2), pages 405-429, November.
    2. A. F. Izmailov & E. I. Uskov, 2017. "Subspace-stabilized sequential quadratic programming," Computational Optimization and Applications, Springer, vol. 67(1), pages 129-154, May.
    3. A. F. Izmailov & M. V. Solodov & E. I. Uskov, 2016. "Globalizing Stabilized Sequential Quadratic Programming Method by Smooth Primal-Dual Exact Penalty Function," Journal of Optimization Theory and Applications, Springer, vol. 169(1), pages 148-178, April.
    4. Daniel Robinson, 2015. "Comments on: Critical Lagrange multipliers: what we currently know about them, how they spoil our lives, and what we can do about it," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 43-47, April.
    5. A. F. Izmailov & M. V. Solodov, 2022. "Perturbed Augmented Lagrangian Method Framework with Applications to Proximal and Smoothed Variants," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 491-522, June.
    6. A. F. Izmailov & M. V. Solodov & E. I. Uskov, 2019. "A globally convergent Levenberg–Marquardt method for equality-constrained optimization," Computational Optimization and Applications, Springer, vol. 72(1), pages 215-239, January.
    7. Paul Armand & Riadh Omheni, 2017. "A Mixed Logarithmic Barrier-Augmented Lagrangian Method for Nonlinear Optimization," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 523-547, May.
    8. Alberto Marchi, 2022. "On a primal-dual Newton proximal method for convex quadratic programs," Computational Optimization and Applications, Springer, vol. 81(2), pages 369-395, March.
    9. Daniel P. Robinson, 2015. "Primal-Dual Active-Set Methods for Large-Scale Optimization," Journal of Optimization Theory and Applications, Springer, vol. 166(1), pages 137-171, July.
    10. Paul Armand & Joël Benoist & Riadh Omheni & Vincent Pateloup, 2014. "Study of a primal-dual algorithm for equality constrained minimization," Computational Optimization and Applications, Springer, vol. 59(3), pages 405-433, December.
    11. A. F. Izmailov & M. V. Solodov, 2015. "Newton-Type Methods: A Broader View," Journal of Optimization Theory and Applications, Springer, vol. 164(2), pages 577-620, February.
    12. A. Izmailov & M. Solodov, 2015. "Rejoinder on: Critical Lagrange multipliers: what we currently know about them, how they spoil our lives, and what we can do about it," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 48-52, April.
    13. Ashkan Mohammadi & Boris S. Mordukhovich & M. Ebrahim Sarabi, 2020. "Superlinear Convergence of the Sequential Quadratic Method in Constrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 731-758, September.
    14. Spyridon Pougkakiotis & Jacek Gondzio, 2021. "An interior point-proximal method of multipliers for convex quadratic programming," Computational Optimization and Applications, Springer, vol. 78(2), pages 307-351, March.
    15. Adrian S. Lewis & Calvin Wylie, 2021. "Active‐Set Newton Methods and Partial Smoothness," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 712-725, May.
    16. Songqiang Qiu, 2019. "Convergence of a stabilized SQP method for equality constrained optimization," Computational Optimization and Applications, Springer, vol. 73(3), pages 957-996, July.
    17. Welington Oliveira, 2020. "Sequential Difference-of-Convex Programming," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 936-959, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:23:y:2015:i:1:p:1-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.