IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v69y2018i2d10.1007_s10589-017-9950-5.html
   My bibliography  Save this article

A globally convergent LP-Newton method for piecewise smooth constrained equations: escaping nonstationary accumulation points

Author

Listed:
  • A. Fischer

    (Technische Universität Dresden)

  • M. Herrich

    (Technische Universität Dresden)

  • A. F. Izmailov

    (Lomonosov Moscow State University, MSU
    RUDN University
    Derzhavin Tambov State University, TSU)

  • W. Scheck

    (Technische Universität Dresden)

  • M. V. Solodov

    (IMPA – Instituto de Matemática Pura e Aplicada)

Abstract

The LP-Newton method for constrained equations, introduced some years ago, has powerful properties of local superlinear convergence, covering both possibly nonisolated solutions and possibly nonsmooth equation mappings. A related globally convergent algorithm, based on the LP-Newton subproblems and linesearch for the equation’s infinity norm residual, has recently been developed. In the case of smooth equations, global convergence of this algorithm to B-stationary points of the residual over the constraint set has been shown, which is a natural result: nothing better should generally be expected in variational settings. However, for the piecewise smooth case only a property weaker than B-stationarity could be guaranteed. In this paper, we develop a procedure for piecewise smooth equations that avoids undesirable accumulation points, thus achieving the intended property of B-stationarity.

Suggested Citation

  • A. Fischer & M. Herrich & A. F. Izmailov & W. Scheck & M. V. Solodov, 2018. "A globally convergent LP-Newton method for piecewise smooth constrained equations: escaping nonstationary accumulation points," Computational Optimization and Applications, Springer, vol. 69(2), pages 325-349, March.
  • Handle: RePEc:spr:coopap:v:69:y:2018:i:2:d:10.1007_s10589-017-9950-5
    DOI: 10.1007/s10589-017-9950-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-017-9950-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-017-9950-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Axel Dreves & Francisco Facchinei & Andreas Fischer & Markus Herrich, 2014. "A new error bound result for Generalized Nash Equilibrium Problems and its algorithmic application," Computational Optimization and Applications, Springer, vol. 59(1), pages 63-84, October.
    2. Andreas Fischer & Markus Herrich & Alexey Izmailov & Mikhail Solodov, 2016. "Convergence conditions for Newton-type methods applied to complementarity systems with nonisolated solutions," Computational Optimization and Applications, Springer, vol. 63(2), pages 425-459, March.
    3. Francisco Facchinei & Andreas Fischer & Markus Herrich, 2013. "A family of Newton methods for nonsmooth constrained systems with nonisolated solutions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(3), pages 433-443, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. F. Izmailov & M. V. Solodov & E. I. Uskov, 2019. "A globally convergent Levenberg–Marquardt method for equality-constrained optimization," Computational Optimization and Applications, Springer, vol. 72(1), pages 215-239, January.
    2. Andreas Fischer & Alexey F. Izmailov & Mikhail V. Solodov, 2024. "The Levenberg–Marquardt method: an overview of modern convergence theories and more," Computational Optimization and Applications, Springer, vol. 89(1), pages 33-67, September.
    3. A. Fischer & A. F. Izmailov & M. Jelitte, 2021. "Newton-type methods near critical solutions of piecewise smooth nonlinear equations," Computational Optimization and Applications, Springer, vol. 80(2), pages 587-615, November.
    4. Andreas Fischer & Markus Herrich & Alexey Izmailov & Mikhail Solodov, 2016. "Convergence conditions for Newton-type methods applied to complementarity systems with nonisolated solutions," Computational Optimization and Applications, Springer, vol. 63(2), pages 425-459, March.
    5. R. Behling & A. Fischer & M. Herrich & A. Iusem & Y. Ye, 2014. "A Levenberg-Marquardt method with approximate projections," Computational Optimization and Applications, Springer, vol. 59(1), pages 5-26, October.
    6. El Houcine Bergou & Youssef Diouane & Vyacheslav Kungurtsev, 2020. "Convergence and Complexity Analysis of a Levenberg–Marquardt Algorithm for Inverse Problems," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 927-944, June.
    7. Jiawang Nie & Xindong Tang & Lingling Xu, 2021. "The Gauss–Seidel method for generalized Nash equilibrium problems of polynomials," Computational Optimization and Applications, Springer, vol. 78(2), pages 529-557, March.
    8. A. Fischer & A. F. Izmailov & M. V. Solodov, 2021. "Accelerating convergence of the globalized Newton method to critical solutions of nonlinear equations," Computational Optimization and Applications, Springer, vol. 78(1), pages 273-286, January.
    9. Axel Dreves & Simone Sagratella, 2020. "Nonsingularity and Stationarity Results for Quasi-Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 711-743, June.
    10. Axel Dreves, 2017. "Computing all solutions of linear generalized Nash equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(2), pages 207-221, April.
    11. Andreas Fischer, 2015. "Comments on: Critical Lagrange multipliers: what we currently know about them, how they spoil our lives, and what we can do about it," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 27-31, April.
    12. Leonardo Galli & Christian Kanzow & Marco Sciandrone, 2018. "A nonmonotone trust-region method for generalized Nash equilibrium and related problems with strong convergence properties," Computational Optimization and Applications, Springer, vol. 69(3), pages 629-652, April.
    13. Vu, Duc Thach Son & Ben Gharbia, Ibtihel & Haddou, Mounir & Tran, Quang Huy, 2021. "A new approach for solving nonlinear algebraic systems with complementarity conditions. Application to compositional multiphase equilibrium problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1243-1274.
    14. Simone Sagratella, 2017. "Algorithms for generalized potential games with mixed-integer variables," Computational Optimization and Applications, Springer, vol. 68(3), pages 689-717, December.
    15. Andreas Fischer & Alexey F. Izmailov & Mikhail V. Solodov, 2019. "Local Attractors of Newton-Type Methods for Constrained Equations and Complementarity Problems with Nonisolated Solutions," Journal of Optimization Theory and Applications, Springer, vol. 180(1), pages 140-169, January.
    16. Jun Pei & Zorica Dražić & Milan Dražić & Nenad Mladenović & Panos M. Pardalos, 2019. "Continuous Variable Neighborhood Search (C-VNS) for Solving Systems of Nonlinear Equations," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 235-250, April.
    17. Naoki Marumo & Takayuki Okuno & Akiko Takeda, 2023. "Majorization-minimization-based Levenberg–Marquardt method for constrained nonlinear least squares," Computational Optimization and Applications, Springer, vol. 84(3), pages 833-874, April.
    18. María de los Ángeles Martínez & Damián Fernández, 2019. "On the Local and Superlinear Convergence of a Secant Modified Linear-Programming-Newton Method," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 993-1010, March.
    19. Francisco Facchinei & Christian Kanzow & Sebastian Karl & Simone Sagratella, 2015. "The semismooth Newton method for the solution of quasi-variational inequalities," Computational Optimization and Applications, Springer, vol. 62(1), pages 85-109, September.
    20. Lorenzo Lampariello & Simone Sagratella, 2020. "Numerically tractable optimistic bilevel problems," Computational Optimization and Applications, Springer, vol. 76(2), pages 277-303, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:69:y:2018:i:2:d:10.1007_s10589-017-9950-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.