IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v170y2016i2d10.1007_s10957-015-0779-8.html
   My bibliography  Save this article

The Cone Condition and Nonsmoothness in Linear Generalized Nash Games

Author

Listed:
  • Oliver Stein

    (Karlsruhe Institute of Technology)

  • Nathan Sudermann-Merx

    (Karlsruhe Institute of Technology)

Abstract

We consider linear generalized Nash games and introduce the so-called cone condition, which characterizes the smoothness of a gap function that arises from a reformulation of the generalized Nash equilibrium problem as a piecewise linear optimization problem based on the Nikaido–Isoda function. Other regularity conditions such as the linear independence constraint qualification or the strict Mangasarian–Fromovitz condition are only sufficient for smoothness, but have the advantage that they can be verified more easily than the cone condition. Therefore, we present special cases, where these conditions are not only sufficient, but also necessary for smoothness of the gap function. Our main tool in the analysis is a global extension of the gap function that allows us to overcome the common difficulty that its domain may not cover the whole space.

Suggested Citation

  • Oliver Stein & Nathan Sudermann-Merx, 2016. "The Cone Condition and Nonsmoothness in Linear Generalized Nash Games," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 687-709, August.
  • Handle: RePEc:spr:joptap:v:170:y:2016:i:2:d:10.1007_s10957-015-0779-8
    DOI: 10.1007/s10957-015-0779-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-015-0779-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-015-0779-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anna Heusinger & Christian Kanzow, 2009. "Optimization reformulations of the generalized Nash equilibrium problem using Nikaido-Isoda-type functions," Computational Optimization and Applications, Springer, vol. 43(3), pages 353-377, July.
    2. Axel Dreves & Christian Kanzow & Oliver Stein, 2012. "Nonsmooth optimization reformulations of player convex generalized Nash equilibrium problems," Journal of Global Optimization, Springer, vol. 53(4), pages 587-614, August.
    3. A. Izmailov & M. Solodov, 2015. "Rejoinder on: Critical Lagrange multipliers: what we currently know about them, how they spoil our lives, and what we can do about it," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 48-52, April.
    4. Francisco Facchinei & Christian Kanzow, 2010. "Generalized Nash Equilibrium Problems," Annals of Operations Research, Springer, vol. 175(1), pages 177-211, March.
    5. Axel Dreves, 2014. "Finding all solutions of affine generalized Nash equilibrium problems with one-dimensional strategy sets," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 80(2), pages 139-159, October.
    6. Oliver Stein & Nathan Sudermann-Merx, 2014. "On smoothness properties of optimal value functions at the boundary of their domain under complete convexity," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 79(3), pages 327-352, June.
    7. A. Izmailov & M. Solodov, 2015. "Critical Lagrange multipliers: what we currently know about them, how they spoil our lives, and what we can do about it," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 1-26, April.
    8. William W. Cooper & Lawrence M. Seiford & Kaoru Tone, 2007. "Data Envelopment Analysis," Springer Books, Springer, edition 0, number 978-0-387-45283-8, April.
    9. Daniel Ralph & Oliver Stein, 2011. "The C-Index: A New Stability Concept for Quadratic Programs with Complementarity Constraints," Mathematics of Operations Research, INFORMS, vol. 36(3), pages 504-526, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stein, Oliver & Sudermann-Merx, Nathan, 2018. "The noncooperative transportation problem and linear generalized Nash games," European Journal of Operational Research, Elsevier, vol. 266(2), pages 543-553.
    2. Sagratella, Simone & Schmidt, Marcel & Sudermann-Merx, Nathan, 2020. "The noncooperative fixed charge transportation problem," European Journal of Operational Research, Elsevier, vol. 284(1), pages 373-382.
    3. Simone Sagratella, 2017. "Algorithms for generalized potential games with mixed-integer variables," Computational Optimization and Applications, Springer, vol. 68(3), pages 689-717, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simone Sagratella, 2017. "Algorithms for generalized potential games with mixed-integer variables," Computational Optimization and Applications, Springer, vol. 68(3), pages 689-717, December.
    2. Nadja Harms & Tim Hoheisel & Christian Kanzow, 2015. "On a Smooth Dual Gap Function for a Class of Player Convex Generalized Nash Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 659-685, August.
    3. Stein, Oliver & Sudermann-Merx, Nathan, 2018. "The noncooperative transportation problem and linear generalized Nash games," European Journal of Operational Research, Elsevier, vol. 266(2), pages 543-553.
    4. Axel Dreves, 2018. "How to Select a Solution in Generalized Nash Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 178(3), pages 973-997, September.
    5. Axel Dreves, 2017. "Computing all solutions of linear generalized Nash equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(2), pages 207-221, April.
    6. A. F. Izmailov & E. I. Uskov, 2017. "Subspace-stabilized sequential quadratic programming," Computational Optimization and Applications, Springer, vol. 67(1), pages 129-154, May.
    7. Migot, Tangi & Cojocaru, Monica-G., 2020. "A parametrized variational inequality approach to track the solution set of a generalized nash equilibrium problem," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1136-1147.
    8. Axel Dreves, 2016. "Improved error bound and a hybrid method for generalized Nash equilibrium problems," Computational Optimization and Applications, Springer, vol. 65(2), pages 431-448, November.
    9. A. F. Izmailov & M. V. Solodov & E. I. Uskov, 2019. "A globally convergent Levenberg–Marquardt method for equality-constrained optimization," Computational Optimization and Applications, Springer, vol. 72(1), pages 215-239, January.
    10. Axel Dreves & Francisco Facchinei & Andreas Fischer & Markus Herrich, 2014. "A new error bound result for Generalized Nash Equilibrium Problems and its algorithmic application," Computational Optimization and Applications, Springer, vol. 59(1), pages 63-84, October.
    11. Han, Deren & Zhang, Hongchao & Qian, Gang & Xu, Lingling, 2012. "An improved two-step method for solving generalized Nash equilibrium problems," European Journal of Operational Research, Elsevier, vol. 216(3), pages 613-623.
    12. Simone Sagratella, 2017. "Computing equilibria of Cournot oligopoly models with mixed-integer quantities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(3), pages 549-565, December.
    13. Giancarlo Bigi & Mauro Passacantando, 2016. "Gap functions for quasi-equilibria," Journal of Global Optimization, Springer, vol. 66(4), pages 791-810, December.
    14. Jiawang Nie & Xindong Tang & Lingling Xu, 2021. "The Gauss–Seidel method for generalized Nash equilibrium problems of polynomials," Computational Optimization and Applications, Springer, vol. 78(2), pages 529-557, March.
    15. A. F. Izmailov & M. V. Solodov & E. I. Uskov, 2016. "Globalizing Stabilized Sequential Quadratic Programming Method by Smooth Primal-Dual Exact Penalty Function," Journal of Optimization Theory and Applications, Springer, vol. 169(1), pages 148-178, April.
    16. A. F. Izmailov, 2021. "Accelerating convergence of a globalized sequential quadratic programming method to critical Lagrange multipliers," Computational Optimization and Applications, Springer, vol. 80(3), pages 943-978, December.
    17. Rodica Ioana Lung & Noémi Gaskó & Mihai Alexandru Suciu, 2020. "Pareto-based evolutionary multiobjective approaches and the generalized Nash equilibrium problem," Journal of Heuristics, Springer, vol. 26(4), pages 561-584, August.
    18. Franz R. Hahn, 2007. "Determinants of Bank Efficiency in Europe. Assessing Bank Performance Across Markets," WIFO Studies, WIFO, number 31499.
    19. Alperovych, Yan & Hübner, Georges & Lobet, Fabrice, 2015. "How does governmental versus private venture capital backing affect a firm's efficiency? Evidence from Belgium," Journal of Business Venturing, Elsevier, vol. 30(4), pages 508-525.
    20. Axel Dreves & Christian Kanzow, 2011. "Nonsmooth optimization reformulations characterizing all solutions of jointly convex generalized Nash equilibrium problems," Computational Optimization and Applications, Springer, vol. 50(1), pages 23-48, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:170:y:2016:i:2:d:10.1007_s10957-015-0779-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.