IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v63y2016i2p425-459.html
   My bibliography  Save this article

Convergence conditions for Newton-type methods applied to complementarity systems with nonisolated solutions

Author

Listed:
  • Andreas Fischer
  • Markus Herrich
  • Alexey Izmailov
  • Mikhail Solodov

Abstract

We consider a class of Newton-type methods that are designed for the difficult case when solutions need not be isolated, and the equation mapping need not be differentiable at the solutions. We show that the only structural assumption needed for rapid local convergence of those algorithms applied to PC $$^1$$ 1 -equations is the piecewise error bound, i.e., a local error bound holding for the branches of the solution set resulting from partitions of the bi-active complementarity indices. The latter error bound is implied by various piecewise constraint qualifications, including relatively weak ones. We apply our results to KKT systems arising from optimization or variational problems, and from generalized Nash equilibrium problems. In the first case, we show convergence if the dual part of the solution is a noncritical Lagrange multiplier, and in the second case convergence follows under a relaxed constant rank condition. In both cases, previously available results are improved. Copyright Springer Science+Business Media New York 2016

Suggested Citation

  • Andreas Fischer & Markus Herrich & Alexey Izmailov & Mikhail Solodov, 2016. "Convergence conditions for Newton-type methods applied to complementarity systems with nonisolated solutions," Computational Optimization and Applications, Springer, vol. 63(2), pages 425-459, March.
  • Handle: RePEc:spr:coopap:v:63:y:2016:i:2:p:425-459
    DOI: 10.1007/s10589-015-9782-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-015-9782-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-015-9782-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jerzy Kyparisis, 1990. "Sensitivity Analysis for Nonlinear Programs and Variational Inequalities with Nonunique Multipliers," Mathematics of Operations Research, INFORMS, vol. 15(2), pages 286-298, May.
    2. Andreas Fischer, 1999. "Modified Wilson's Method for Nonlinear Programs with Nonunique Multipliers," Mathematics of Operations Research, INFORMS, vol. 24(3), pages 699-727, August.
    3. Francisco Facchinei & Andreas Fischer & Markus Herrich, 2013. "A family of Newton methods for nonsmooth constrained systems with nonisolated solutions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(3), pages 433-443, June.
    4. Francisco Facchinei & Christian Kanzow, 2010. "Generalized Nash Equilibrium Problems," Annals of Operations Research, Springer, vol. 175(1), pages 177-211, March.
    5. Alexey Izmailov & Mikhail Solodov, 2014. "On error bounds and Newton-type methods for generalized Nash equilibrium problems," Computational Optimization and Applications, Springer, vol. 59(1), pages 201-218, October.
    6. Axel Dreves & Francisco Facchinei & Andreas Fischer & Markus Herrich, 2014. "A new error bound result for Generalized Nash Equilibrium Problems and its algorithmic application," Computational Optimization and Applications, Springer, vol. 59(1), pages 63-84, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Fischer & M. Herrich & A. F. Izmailov & W. Scheck & M. V. Solodov, 2018. "A globally convergent LP-Newton method for piecewise smooth constrained equations: escaping nonstationary accumulation points," Computational Optimization and Applications, Springer, vol. 69(2), pages 325-349, March.
    2. María de los Ángeles Martínez & Damián Fernández, 2019. "On the Local and Superlinear Convergence of a Secant Modified Linear-Programming-Newton Method," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 993-1010, March.
    3. A. F. Izmailov & M. V. Solodov & E. I. Uskov, 2019. "A globally convergent Levenberg–Marquardt method for equality-constrained optimization," Computational Optimization and Applications, Springer, vol. 72(1), pages 215-239, January.
    4. A. Fischer & A. F. Izmailov & M. Jelitte, 2021. "Newton-type methods near critical solutions of piecewise smooth nonlinear equations," Computational Optimization and Applications, Springer, vol. 80(2), pages 587-615, November.
    5. Andreas Fischer & Alexey F. Izmailov & Mikhail V. Solodov, 2019. "Local Attractors of Newton-Type Methods for Constrained Equations and Complementarity Problems with Nonisolated Solutions," Journal of Optimization Theory and Applications, Springer, vol. 180(1), pages 140-169, January.
    6. Jun Pei & Zorica Dražić & Milan Dražić & Nenad Mladenović & Panos M. Pardalos, 2019. "Continuous Variable Neighborhood Search (C-VNS) for Solving Systems of Nonlinear Equations," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 235-250, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leonardo Galli & Christian Kanzow & Marco Sciandrone, 2018. "A nonmonotone trust-region method for generalized Nash equilibrium and related problems with strong convergence properties," Computational Optimization and Applications, Springer, vol. 69(3), pages 629-652, April.
    2. Simone Sagratella, 2017. "Algorithms for generalized potential games with mixed-integer variables," Computational Optimization and Applications, Springer, vol. 68(3), pages 689-717, December.
    3. Axel Dreves & Simone Sagratella, 2020. "Nonsingularity and Stationarity Results for Quasi-Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 711-743, June.
    4. Axel Dreves, 2017. "Computing all solutions of linear generalized Nash equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(2), pages 207-221, April.
    5. Andreas Fischer, 2015. "Comments on: Critical Lagrange multipliers: what we currently know about them, how they spoil our lives, and what we can do about it," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 27-31, April.
    6. A. Fischer & M. Herrich & A. F. Izmailov & W. Scheck & M. V. Solodov, 2018. "A globally convergent LP-Newton method for piecewise smooth constrained equations: escaping nonstationary accumulation points," Computational Optimization and Applications, Springer, vol. 69(2), pages 325-349, March.
    7. Giancarlo Bigi & Mauro Passacantando, 2016. "Gap functions for quasi-equilibria," Journal of Global Optimization, Springer, vol. 66(4), pages 791-810, December.
    8. Jiawang Nie & Xindong Tang & Lingling Xu, 2021. "The Gauss–Seidel method for generalized Nash equilibrium problems of polynomials," Computational Optimization and Applications, Springer, vol. 78(2), pages 529-557, March.
    9. Lorenzo Lampariello & Simone Sagratella, 2020. "Numerically tractable optimistic bilevel problems," Computational Optimization and Applications, Springer, vol. 76(2), pages 277-303, June.
    10. Oliver Stein & Nathan Sudermann-Merx, 2016. "The Cone Condition and Nonsmoothness in Linear Generalized Nash Games," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 687-709, August.
    11. Nadja Harms & Tim Hoheisel & Christian Kanzow, 2015. "On a Smooth Dual Gap Function for a Class of Player Convex Generalized Nash Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 659-685, August.
    12. Lorenzo Lampariello & Simone Sagratella, 2015. "It is a matter of hierarchy: a Nash equilibrium problem perspective on bilevel programming," DIAG Technical Reports 2015-07, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    13. Alexey Izmailov & Mikhail Solodov, 2014. "On error bounds and Newton-type methods for generalized Nash equilibrium problems," Computational Optimization and Applications, Springer, vol. 59(1), pages 201-218, October.
    14. Vu, Duc Thach Son & Ben Gharbia, Ibtihel & Haddou, Mounir & Tran, Quang Huy, 2021. "A new approach for solving nonlinear algebraic systems with complementarity conditions. Application to compositional multiphase equilibrium problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1243-1274.
    15. Nagurney, Anna, 2021. "Supply chain game theory network modeling under labor constraints: Applications to the Covid-19 pandemic," European Journal of Operational Research, Elsevier, vol. 293(3), pages 880-891.
    16. Otgochuluu, Ch. & Altangerel, L. & Battur, G. & Khashchuluun, Ch. & Dorjsundui, G., 2021. "A game theory application in the copper market," Resources Policy, Elsevier, vol. 70(C).
    17. Migot, Tangi & Cojocaru, Monica-G., 2020. "A parametrized variational inequality approach to track the solution set of a generalized nash equilibrium problem," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1136-1147.
    18. Chungen Shen & Lei-Hong Zhang & Wei Liu, 2016. "A stabilized filter SQP algorithm for nonlinear programming," Journal of Global Optimization, Springer, vol. 65(4), pages 677-708, August.
    19. Denizalp Goktas & Jiayi Zhao & Amy Greenwald, 2023. "T\^atonnement in Homothetic Fisher Markets," Papers 2306.04890, arXiv.org.
    20. Yang, Hai, 1997. "Sensitivity analysis for the elastic-demand network equilibrium problem with applications," Transportation Research Part B: Methodological, Elsevier, vol. 31(1), pages 55-70, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:63:y:2016:i:2:p:425-459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.