IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v83y2022i3d10.1007_s10589-022-00402-x.html
   My bibliography  Save this article

A stabilized sequential quadratic semidefinite programming method for degenerate nonlinear semidefinite programs

Author

Listed:
  • Yuya Yamakawa

    (Kyoto University)

  • Takayuki Okuno

    (Seikei University
    RIKEN)

Abstract

In this paper, we propose a new sequential quadratic semidefinite programming (SQSDP) method for solving degenerate nonlinear semidefinite programs (NSDPs), in which we produce iteration points by solving a sequence of stabilized quadratic semidefinite programming (QSDP) subproblems, which we derive from the minimax problem associated with the NSDP. Unlike the existing SQSDP methods, the proposed one allows us to solve those QSDP subproblems inexactly, and each QSDP is feasible. One more remarkable point of the proposed method is that constraint qualifications or boundedness of Lagrange multiplier sequences are not required in the global convergence analysis. Specifically, without assuming such conditions, we prove the global convergence to a point satisfying any of the following: the stationary conditions for the feasibility problem, the approximate-Karush–Kuhn–Tucker (AKKT) conditions, and the trace-AKKT conditions. Finally, we conduct some numerical experiments to examine the efficiency of the proposed method.

Suggested Citation

  • Yuya Yamakawa & Takayuki Okuno, 2022. "A stabilized sequential quadratic semidefinite programming method for degenerate nonlinear semidefinite programs," Computational Optimization and Applications, Springer, vol. 83(3), pages 1027-1064, December.
  • Handle: RePEc:spr:coopap:v:83:y:2022:i:3:d:10.1007_s10589-022-00402-x
    DOI: 10.1007/s10589-022-00402-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-022-00402-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-022-00402-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qi Zhao & Zhongwen Chen, 2020. "A line search exact penalty method for nonlinear semidefinite programming," Computational Optimization and Applications, Springer, vol. 75(2), pages 467-491, March.
    2. Huixian Wu & Hezhi Luo & Xiaodong Ding & Guanting Chen, 2013. "Global convergence of modified augmented Lagrangian methods for nonlinear semidefinite programming," Computational Optimization and Applications, Springer, vol. 56(3), pages 531-558, December.
    3. A. F. Izmailov & E. I. Uskov, 2017. "Subspace-stabilized sequential quadratic programming," Computational Optimization and Applications, Springer, vol. 67(1), pages 129-154, May.
    4. Li Yang & Bo Yu, 2013. "A homotopy method for nonlinear semidefinite programming," Computational Optimization and Applications, Springer, vol. 56(1), pages 81-96, September.
    5. A. Izmailov & M. Solodov & E. Uskov, 2015. "Combining stabilized SQP with the augmented Lagrangian algorithm," Computational Optimization and Applications, Springer, vol. 62(2), pages 405-429, November.
    6. Qi Zhao & Zhongwen Chen, 2018. "An SQP-type Method with Superlinear Convergence for Nonlinear Semidefinite Programming," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(03), pages 1-25, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shun Arahata & Takayuki Okuno & Akiko Takeda, 2023. "Complexity analysis of interior-point methods for second-order stationary points of nonlinear semidefinite optimization problems," Computational Optimization and Applications, Springer, vol. 86(2), pages 555-598, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. F. Izmailov & M. V. Solodov & E. I. Uskov, 2019. "A globally convergent Levenberg–Marquardt method for equality-constrained optimization," Computational Optimization and Applications, Springer, vol. 72(1), pages 215-239, January.
    2. Li Yang & Bo Yu & YanXi Li, 2015. "A homotopy method based on penalty function for nonlinear semidefinite programming," Journal of Global Optimization, Springer, vol. 63(1), pages 61-76, September.
    3. A. F. Izmailov & E. I. Uskov, 2017. "Subspace-stabilized sequential quadratic programming," Computational Optimization and Applications, Springer, vol. 67(1), pages 129-154, May.
    4. M. V. Dolgopolik, 2018. "A Unified Approach to the Global Exactness of Penalty and Augmented Lagrangian Functions I: Parametric Exactness," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 728-744, March.
    5. A. F. Izmailov & M. V. Solodov & E. I. Uskov, 2016. "Globalizing Stabilized Sequential Quadratic Programming Method by Smooth Primal-Dual Exact Penalty Function," Journal of Optimization Theory and Applications, Springer, vol. 169(1), pages 148-178, April.
    6. E. G. Birgin & R. D. Lobato & J. M. Martínez, 2017. "A nonlinear programming model with implicit variables for packing ellipsoids," Journal of Global Optimization, Springer, vol. 68(3), pages 467-499, July.
    7. E. G. Birgin & R. D. Lobato & J. M. Martínez, 2016. "Packing ellipsoids by nonlinear optimization," Journal of Global Optimization, Springer, vol. 65(4), pages 709-743, August.
    8. A. F. Izmailov, 2021. "Accelerating convergence of a globalized sequential quadratic programming method to critical Lagrange multipliers," Computational Optimization and Applications, Springer, vol. 80(3), pages 943-978, December.
    9. M. V. Dolgopolik, 2018. "Augmented Lagrangian functions for cone constrained optimization: the existence of global saddle points and exact penalty property," Journal of Global Optimization, Springer, vol. 71(2), pages 237-296, June.
    10. M. V. Dolgopolik, 2018. "A Unified Approach to the Global Exactness of Penalty and Augmented Lagrangian Functions II: Extended Exactness," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 745-762, March.
    11. Yuya Yamakawa & Hiroyuki Sato, 2022. "Sequential optimality conditions for nonlinear optimization on Riemannian manifolds and a globally convergent augmented Lagrangian method," Computational Optimization and Applications, Springer, vol. 81(2), pages 397-421, March.
    12. Hezhi Luo & Huixian Wu & Jianzhen Liu, 2015. "On Saddle Points in Semidefinite Optimization via Separation Scheme," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 113-150, April.
    13. Songqiang Qiu, 2019. "Convergence of a stabilized SQP method for equality constrained optimization," Computational Optimization and Applications, Springer, vol. 73(3), pages 957-996, July.
    14. Dominique Orban & Abel Soares Siqueira, 2020. "A regularization method for constrained nonlinear least squares," Computational Optimization and Applications, Springer, vol. 76(3), pages 961-989, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:83:y:2022:i:3:d:10.1007_s10589-022-00402-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.