IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v68y2017i3d10.1007_s10898-016-0483-8.html
   My bibliography  Save this article

A nonlinear programming model with implicit variables for packing ellipsoids

Author

Listed:
  • E. G. Birgin

    (University of São Paulo)

  • R. D. Lobato

    (University of São Paulo)

  • J. M. Martínez

    (State University of Campinas)

Abstract

The problem of packing ellipsoids is considered in the present work. Usually, the computational effort associated with numerical optimization methods devoted to packing ellipsoids grows quadratically with respect to the number of ellipsoids being packed. The reason is that the number of variables and constraints of ellipsoids’ packing models is associated with the requirement that every pair of ellipsoids must not overlap. As a consequence, it is hard to solve the problem when the number of ellipsoids is large. In this paper, we present a nonlinear programming model for packing ellipsoids that contains a linear number of variables and constraints. The proposed model finds its basis in a transformation-based non-overlapping model recently introduced by Birgin et al. (J Glob Optim 65(4):709–743, 2016). For solving large-sized instances of ellipsoids’ packing problems with up to 1000 ellipsoids, a multi-start strategy that combines clever initial random guesses with a state-of-the-art (local) nonlinear optimization solver is presented. Numerical experiments show the efficiency and effectiveness of the proposed model and methodology.

Suggested Citation

  • E. G. Birgin & R. D. Lobato & J. M. Martínez, 2017. "A nonlinear programming model with implicit variables for packing ellipsoids," Journal of Global Optimization, Springer, vol. 68(3), pages 467-499, July.
  • Handle: RePEc:spr:jglopt:v:68:y:2017:i:3:d:10.1007_s10898-016-0483-8
    DOI: 10.1007/s10898-016-0483-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-016-0483-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-016-0483-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Josef Kallrath & Steffen Rebennack, 2014. "Cutting ellipses from area-minimizing rectangles," Journal of Global Optimization, Springer, vol. 59(2), pages 405-437, July.
    2. Birgin, E. G. & Martinez, J. M. & Ronconi, D. P., 2005. "Optimizing the packing of cylinders into a rectangular container: A nonlinear approach," European Journal of Operational Research, Elsevier, vol. 160(1), pages 19-33, January.
    3. Stoyan, Yu. G. & Yas'kov, G., 2004. "A mathematical model and a solution method for the problem of placing various-sized circles into a strip," European Journal of Operational Research, Elsevier, vol. 156(3), pages 590-600, August.
    4. A. Izmailov & M. Solodov & E. Uskov, 2015. "Combining stabilized SQP with the augmented Lagrangian algorithm," Computational Optimization and Applications, Springer, vol. 62(2), pages 405-429, November.
    5. Y G Stoyan & M V Zlotnik & A M Chugay, 2012. "Solving an optimization packing problem of circles and non-convex polygons with rotations into a multiply connected region," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(3), pages 379-391, March.
    6. E. G. Birgin & R. D. Lobato & J. M. Martínez, 2016. "Packing ellipsoids by nonlinear optimization," Journal of Global Optimization, Springer, vol. 65(4), pages 709-743, August.
    7. Yuriy Stoyan & Georgiy Yaskov, 2012. "Packing congruent hyperspheres into a hypersphere," Journal of Global Optimization, Springer, vol. 52(4), pages 855-868, April.
    8. Castillo, Ignacio & Kampas, Frank J. & Pintér, János D., 2008. "Solving circle packing problems by global optimization: Numerical results and industrial applications," European Journal of Operational Research, Elsevier, vol. 191(3), pages 786-802, December.
    9. Yuriy Stoyan & Tatiana Romanova & Alexander Pankratov & Andrey Chugay, 2015. "Optimized Object Packings Using Quasi-Phi-Functions," Springer Optimization and Its Applications, in: Giorgio Fasano & János D. Pintér (ed.), Optimized Packings with Applications, edition 1, chapter 0, pages 265-293, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Romanova, Tatiana & Litvinchev, Igor & Pankratov, Alexander, 2020. "Packing ellipsoids in an optimized cylinder," European Journal of Operational Research, Elsevier, vol. 285(2), pages 429-443.
    2. Birgin, E.G. & Lobato, R.D., 2019. "A matheuristic approach with nonlinear subproblems for large-scale packing of ellipsoids," European Journal of Operational Research, Elsevier, vol. 272(2), pages 447-464.
    3. Tiago Montanher & Arnold Neumaier & Mihály Csaba Markót & Ferenc Domes & Hermann Schichl, 2019. "Rigorous packing of unit squares into a circle," Journal of Global Optimization, Springer, vol. 73(3), pages 547-565, March.
    4. Frank J. Kampas & János D. Pintér & Ignacio Castillo, 2020. "Packing ovals in optimized regular polygons," Journal of Global Optimization, Springer, vol. 77(1), pages 175-196, May.
    5. A. Pankratov & T. Romanova & I. Litvinchev, 2019. "Packing ellipses in an optimized convex polygon," Journal of Global Optimization, Springer, vol. 75(2), pages 495-522, October.
    6. Ryu, Joonghyun & Lee, Mokwon & Kim, Donguk & Kallrath, Josef & Sugihara, Kokichi & Kim, Deok-Soo, 2020. "VOROPACK-D: Real-time disk packing algorithm using Voronoi diagram," Applied Mathematics and Computation, Elsevier, vol. 375(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E. G. Birgin & R. D. Lobato & J. M. Martínez, 2016. "Packing ellipsoids by nonlinear optimization," Journal of Global Optimization, Springer, vol. 65(4), pages 709-743, August.
    2. A. Pankratov & T. Romanova & I. Litvinchev, 2019. "Packing ellipses in an optimized convex polygon," Journal of Global Optimization, Springer, vol. 75(2), pages 495-522, October.
    3. Fu, Zhanghua & Huang, Wenqi & Lü, Zhipeng, 2013. "Iterated tabu search for the circular open dimension problem," European Journal of Operational Research, Elsevier, vol. 225(2), pages 236-243.
    4. Frank J. Kampas & János D. Pintér & Ignacio Castillo, 2020. "Packing ovals in optimized regular polygons," Journal of Global Optimization, Springer, vol. 77(1), pages 175-196, May.
    5. Romanova, Tatiana & Litvinchev, Igor & Pankratov, Alexander, 2020. "Packing ellipsoids in an optimized cylinder," European Journal of Operational Research, Elsevier, vol. 285(2), pages 429-443.
    6. Tiago Montanher & Arnold Neumaier & Mihály Csaba Markót & Ferenc Domes & Hermann Schichl, 2019. "Rigorous packing of unit squares into a circle," Journal of Global Optimization, Springer, vol. 73(3), pages 547-565, March.
    7. I Al-Mudahka & M Hifi & R M'Hallah, 2011. "Packing circles in the smallest circle: an adaptive hybrid algorithm," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(11), pages 1917-1930, November.
    8. Galiev, Shamil I. & Lisafina, Maria S., 2013. "Linear models for the approximate solution of the problem of packing equal circles into a given domain," European Journal of Operational Research, Elsevier, vol. 230(3), pages 505-514.
    9. Birgin, E.G. & Lobato, R.D., 2019. "A matheuristic approach with nonlinear subproblems for large-scale packing of ellipsoids," European Journal of Operational Research, Elsevier, vol. 272(2), pages 447-464.
    10. Lai, Xiangjing & Hao, Jin-Kao & Yue, Dong & Lü, Zhipeng & Fu, Zhang-Hua, 2022. "Iterated dynamic thresholding search for packing equal circles into a circular container," European Journal of Operational Research, Elsevier, vol. 299(1), pages 137-153.
    11. Zeng, Zhizhong & Yu, Xinguo & He, Kun & Huang, Wenqi & Fu, Zhanghua, 2016. "Iterated Tabu Search and Variable Neighborhood Descent for packing unequal circles into a circular container," European Journal of Operational Research, Elsevier, vol. 250(2), pages 615-627.
    12. Huang, Wenqi & Ye, Tao, 2011. "Global optimization method for finding dense packings of equal circles in a circle," European Journal of Operational Research, Elsevier, vol. 210(3), pages 474-481, May.
    13. Leao, Aline A.S. & Toledo, Franklina M.B. & Oliveira, José Fernando & Carravilla, Maria Antónia & Alvarez-Valdés, Ramón, 2020. "Irregular packing problems: A review of mathematical models," European Journal of Operational Research, Elsevier, vol. 282(3), pages 803-822.
    14. Castillo, Ignacio & Kampas, Frank J. & Pintér, János D., 2008. "Solving circle packing problems by global optimization: Numerical results and industrial applications," European Journal of Operational Research, Elsevier, vol. 191(3), pages 786-802, December.
    15. Niblett, Matthew R. & Church, Richard L., 2015. "The disruptive anti-covering location problem," European Journal of Operational Research, Elsevier, vol. 247(3), pages 764-773.
    16. Yaohua He & Yong Wu, 2013. "Packing non-identical circles within a rectangle with open length," Journal of Global Optimization, Springer, vol. 56(3), pages 1187-1215, July.
    17. López, C.O. & Beasley, J.E., 2016. "A formulation space search heuristic for packing unequal circles in a fixed size circular container," European Journal of Operational Research, Elsevier, vol. 251(1), pages 64-73.
    18. Akang Wang & Chrysanthos E. Gounaris, 2021. "On tackling reverse convex constraints for non-overlapping of unequal circles," Journal of Global Optimization, Springer, vol. 80(2), pages 357-385, June.
    19. A. Grosso & A. Jamali & M. Locatelli & F. Schoen, 2010. "Solving the problem of packing equal and unequal circles in a circular container," Journal of Global Optimization, Springer, vol. 47(1), pages 63-81, May.
    20. K A Dowsland & M Gilbert & G Kendall, 2007. "A local search approach to a circle cutting problem arising in the motor cycle industry," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(4), pages 429-438, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:68:y:2017:i:3:d:10.1007_s10898-016-0483-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.