IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v284y2020i1p53-66.html
   My bibliography  Save this article

An extension of the non-inferior set estimation algorithm for many objectives

Author

Listed:
  • Raimundo, Marcos M.
  • Ferreira, Paulo A.V.
  • Von Zuben, Fernando J.

Abstract

This work proposes a novel multi-objective optimization approach that globally finds a representative non-inferior set of solutions, also known as Pareto-optimal solutions, by automatically formulating and solving a sequence of weighted sum method scalarization problems. The approach is called MONISE (Many-Objective NISE) because it represents an extension of the well-known non-inferior set estimation (NISE) algorithm, which was originally conceived to deal with two-dimensional objective spaces. The proposal is endowed with the following characteristics: (1) uses a mixed-integer linear programming formulation to operate in two or more dimensions, thus properly supporting many (i.e., three or more) objectives; (2) relies on an external algorithm to solve the weighted sum method scalarization problem to optimality; and (3) creates a faithful representation of the Pareto frontier in the case of convex problems, and a useful approximation of it in the non-convex case. Moreover, when dealing specifically with two objectives, some additional properties are portrayed for the estimated non-inferior set. Experimental results validate the proposal and indicate that MONISE is competitive, in convex and non-convex (combinatorial) problems, both in terms of computational cost and the overall quality of the non-inferior set, measured by the acquired hypervolume.

Suggested Citation

  • Raimundo, Marcos M. & Ferreira, Paulo A.V. & Von Zuben, Fernando J., 2020. "An extension of the non-inferior set estimation algorithm for many objectives," European Journal of Operational Research, Elsevier, vol. 284(1), pages 53-66.
  • Handle: RePEc:eee:ejores:v:284:y:2020:i:1:p:53-66
    DOI: 10.1016/j.ejor.2019.11.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719309282
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.11.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kathrin Klamroth & Jørgen Tind & Margaret M. Wiecek, 2003. "Unbiased approximation in multicriteria optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 56(3), pages 413-437, January.
    2. Rasmus Bokrantz & Anders Forsgren, 2013. "An Algorithm for Approximating Convex Pareto Surfaces Based on Dual Techniques," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 377-393, May.
    3. Lizhen Shao & Matthias Ehrgott, 2008. "Approximately solving multiobjective linear programmes in objective space and an application in radiotherapy treatment planning," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(2), pages 257-276, October.
    4. Michael Masin & Yossi Bukchin, 2008. "Diversity Maximization Approach for Multiobjective Optimization," Operations Research, INFORMS, vol. 56(2), pages 411-424, April.
    5. Beume, Nicola & Naujoks, Boris & Emmerich, Michael, 2007. "SMS-EMOA: Multiobjective selection based on dominated hypervolume," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1653-1669, September.
    6. Melih Ozlen & Benjamin A. Burton & Cameron A. G. MacRae, 2014. "Multi-Objective Integer Programming: An Improved Recursive Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 470-482, February.
    7. Matthias Ehrgott & Lizhen Shao & Anita Schöbel, 2011. "An approximation algorithm for convex multi-objective programming problems," Journal of Global Optimization, Springer, vol. 50(3), pages 397-416, July.
    8. Özlen, Melih & Azizoglu, Meral, 2009. "Multi-objective integer programming: A general approach for generating all non-dominated solutions," European Journal of Operational Research, Elsevier, vol. 199(1), pages 25-35, November.
    9. Kirlik, Gokhan & Sayın, Serpil, 2014. "A new algorithm for generating all nondominated solutions of multiobjective discrete optimization problems," European Journal of Operational Research, Elsevier, vol. 232(3), pages 479-488.
    10. Gijs Rennen & Edwin R. van Dam & Dick den Hertog, 2011. "Enhancement of Sandwich Algorithms for Approximating Higher-Dimensional Convex Pareto Sets," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 493-517, November.
    11. Ceyhan, Gökhan & Köksalan, Murat & Lokman, Banu, 2019. "Finding a representative nondominated set for multi-objective mixed integer programs," European Journal of Operational Research, Elsevier, vol. 272(1), pages 61-77.
    12. Gabriele Eichfelder, 2009. "Scalarizations for adaptively solving multi-objective optimization problems," Computational Optimization and Applications, Springer, vol. 44(2), pages 249-273, November.
    13. Sylva, John & Crema, Alejandro, 2004. "A method for finding the set of non-dominated vectors for multiple objective integer linear programs," European Journal of Operational Research, Elsevier, vol. 158(1), pages 46-55, October.
    14. Solanki, Rajendra S. & Appino, Perry A. & Cohon, Jared L., 1993. "Approximating the noninferior set in multiobjective linear programming problems," European Journal of Operational Research, Elsevier, vol. 68(3), pages 356-373, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Linda & Firouz, Mohammad & Ahmed, Abdulaziz & Delen, Dursun, 2023. "On the Egalitarian–Utilitarian spectrum in stochastic capacitated resource allocation problems," International Journal of Production Economics, Elsevier, vol. 262(C).
    2. Petchrompo, Sanyapong & Wannakrairot, Anupong & Parlikad, Ajith Kumar, 2022. "Pruning Pareto optimal solutions for multi-objective portfolio asset management," European Journal of Operational Research, Elsevier, vol. 297(1), pages 203-220.
    3. Dai, Jingqi & Li, Zongmin, 2023. "An equilibrium approach towards sustainable operation of a modern coal chemical industrial park," Omega, Elsevier, vol. 120(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Özarık, Sami Serkan & Lokman, Banu & Köksalan, Murat, 2020. "Distribution based representative sets for multi-objective integer programs," European Journal of Operational Research, Elsevier, vol. 284(2), pages 632-643.
    2. Koenen, Melissa & Balvert, Marleen & Fleuren, H.A., 2023. "A Renewed Take on Weighted Sum in Sandwich Algorithms : Modification of the Criterion Space," Discussion Paper 2023-012, Tilburg University, Center for Economic Research.
    3. Koenen, Melissa & Balvert, Marleen & Fleuren, H.A., 2023. "A Renewed Take on Weighted Sum in Sandwich Algorithms : Modification of the Criterion Space," Other publications TiSEM 795b6c0c-c7bc-4ced-9d6b-a, Tilburg University, School of Economics and Management.
    4. Mesquita-Cunha, Mariana & Figueira, José Rui & Barbosa-Póvoa, Ana Paula, 2023. "New ϵ−constraint methods for multi-objective integer linear programming: A Pareto front representation approach," European Journal of Operational Research, Elsevier, vol. 306(1), pages 286-307.
    5. Ceyhan, Gökhan & Köksalan, Murat & Lokman, Banu, 2019. "Finding a representative nondominated set for multi-objective mixed integer programs," European Journal of Operational Research, Elsevier, vol. 272(1), pages 61-77.
    6. Satya Tamby & Daniel Vanderpooten, 2021. "Enumeration of the Nondominated Set of Multiobjective Discrete Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 72-85, January.
    7. Timothy C. Y. Chan & Tim Craig & Taewoo Lee & Michael B. Sharpe, 2014. "Generalized Inverse Multiobjective Optimization with Application to Cancer Therapy," Operations Research, INFORMS, vol. 62(3), pages 680-695, June.
    8. David Bergman & Merve Bodur & Carlos Cardonha & Andre A. Cire, 2022. "Network Models for Multiobjective Discrete Optimization," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 990-1005, March.
    9. Holzmann, Tim & Smith, J.C., 2018. "Solving discrete multi-objective optimization problems using modified augmented weighted Tchebychev scalarizations," European Journal of Operational Research, Elsevier, vol. 271(2), pages 436-449.
    10. Natashia Boland & Hadi Charkhgard & Martin Savelsbergh, 2015. "A Criterion Space Search Algorithm for Biobjective Integer Programming: The Balanced Box Method," INFORMS Journal on Computing, INFORMS, vol. 27(4), pages 735-754, November.
    11. Bashir Bashir & Özlem Karsu, 2022. "Solution approaches for equitable multiobjective integer programming problems," Annals of Operations Research, Springer, vol. 311(2), pages 967-995, April.
    12. Kerstin Dächert & Kathrin Klamroth, 2015. "A linear bound on the number of scalarizations needed to solve discrete tricriteria optimization problems," Journal of Global Optimization, Springer, vol. 61(4), pages 643-676, April.
    13. Rasmus Bokrantz & Anders Forsgren, 2013. "An Algorithm for Approximating Convex Pareto Surfaces Based on Dual Techniques," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 377-393, May.
    14. Seyyed Amir Babak Rasmi & Ali Fattahi & Metin Türkay, 2021. "SASS: slicing with adaptive steps search method for finding the non-dominated points of tri-objective mixed-integer linear programming problems," Annals of Operations Research, Springer, vol. 296(1), pages 841-876, January.
    15. Ozgu Turgut & Evrim Dalkiran & Alper E. Murat, 2019. "An exact parallel objective space decomposition algorithm for solving multi-objective integer programming problems," Journal of Global Optimization, Springer, vol. 75(1), pages 35-62, September.
    16. William Pettersson & Melih Ozlen, 2020. "Multiobjective Integer Programming: Synergistic Parallel Approaches," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 461-472, April.
    17. Tolga Bektaş, 2018. "Disjunctive Programming for Multiobjective Discrete Optimisation," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 625-633, November.
    18. Kuan-Min Lin & Matthias Ehrgott & Andrea Raith, 2017. "Integrating column generation in a method to compute a discrete representation of the non-dominated set of multi-objective linear programmes," 4OR, Springer, vol. 15(4), pages 331-357, December.
    19. Doğan, Ilgın & Lokman, Banu & Köksalan, Murat, 2022. "Representing the nondominated set in multi-objective mixed-integer programs," European Journal of Operational Research, Elsevier, vol. 296(3), pages 804-818.
    20. Cacchiani, Valentina & D’Ambrosio, Claudia, 2017. "A branch-and-bound based heuristic algorithm for convex multi-objective MINLPs," European Journal of Operational Research, Elsevier, vol. 260(3), pages 920-933.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:284:y:2020:i:1:p:53-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.