IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v86y2023i2d10.1007_s10898-023-01280-1.html
   My bibliography  Save this article

Faster distance-based representative skyline and k-center along pareto front in the plane

Author

Listed:
  • Sergio Cabello

    (Univerza v Ljubljani Fakulteta za matematiko in fiziko
    Institute of Mathematics, Physics and Mechanics)

Abstract

We consider the problem of computing the distance-based representative skyline in the plane, a problem introduced by Tao, Ding, Lin and Pei [Proc. 25th IEEE International Conference on Data Engineering (ICDE), 2009] and independently considered by Dupin, Nielsen and Talbi [Mathematics; Optimization and Learning - Third International Conference, OLA 2020] in the context of multi-objective optimization. Given a set P of n points in the plane and a parameter k, the task is to select k points of the skyline defined by P (also known as Pareto front for P) to minimize the maximum distance from the points of the skyline to the selected points. We show that the problem can be solved in $$O(n\log h)$$ O ( n log h ) time, where h is the number of points in the skyline of P. We also show that the decision problem can be solved in $$O(n\log k)$$ O ( n log k ) time and the optimization problem can be solved in $$O(n \log k + n {{\,\textrm{loglog}\,}}n)$$ O ( n log k + n loglog n ) time. This improves previous algorithms and is optimal for a large range of values of k.

Suggested Citation

  • Sergio Cabello, 2023. "Faster distance-based representative skyline and k-center along pareto front in the plane," Journal of Global Optimization, Springer, vol. 86(2), pages 441-466, June.
  • Handle: RePEc:spr:jglopt:v:86:y:2023:i:2:d:10.1007_s10898-023-01280-1
    DOI: 10.1007/s10898-023-01280-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-023-01280-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-023-01280-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Beume, Nicola & Naujoks, Boris & Emmerich, Michael, 2007. "SMS-EMOA: Multiobjective selection based on dominated hypervolume," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1653-1669, September.
    2. Dorit S. Hochbaum & David B. Shmoys, 1985. "A Best Possible Heuristic for the k -Center Problem," Mathematics of Operations Research, INFORMS, vol. 10(2), pages 180-184, May.
    3. Nimrod Megiddo, 1979. "Combinatorial Optimization with Rational Objective Functions," Mathematics of Operations Research, INFORMS, vol. 4(4), pages 414-424, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steffen Rebennack & Ashwin Arulselvan & Lily Elefteriadou & Panos M. Pardalos, 2010. "Complexity analysis for maximum flow problems with arc reversals," Journal of Combinatorial Optimization, Springer, vol. 19(2), pages 200-216, February.
    2. Liagkouras, Konstantinos & Metaxiotis, Konstantinos, 2021. "Improving multi-objective algorithms performance by emulating behaviors from the human social analogue in candidate solutions," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1019-1036.
    3. Gong, Wenyin & Cai, Zhihua, 2009. "An improved multiobjective differential evolution based on Pareto-adaptive [epsilon]-dominance and orthogonal design," European Journal of Operational Research, Elsevier, vol. 198(2), pages 576-601, October.
    4. Barbara Anthony & Vineet Goyal & Anupam Gupta & Viswanath Nagarajan, 2010. "A Plant Location Guide for the Unsure: Approximation Algorithms for Min-Max Location Problems," Mathematics of Operations Research, INFORMS, vol. 35(1), pages 79-101, February.
    5. Andrea Ponti & Antonio Candelieri & Ilaria Giordani & Francesco Archetti, 2023. "Intrusion Detection in Networks by Wasserstein Enabled Many-Objective Evolutionary Algorithms," Mathematics, MDPI, vol. 11(10), pages 1-14, May.
    6. Hassin, Refael & Sarid, Anna, 2018. "Operations research applications of dichotomous search," European Journal of Operational Research, Elsevier, vol. 265(3), pages 795-812.
    7. Yunsong Han & Hong Yu & Cheng Sun, 2017. "Simulation-Based Multiobjective Optimization of Timber-Glass Residential Buildings in Severe Cold Regions," Sustainability, MDPI, vol. 9(12), pages 1-18, December.
    8. Pursals, Salvador Casadesús & Garzón, Federico Garriga, 2009. "Optimal building evacuation time considering evacuation routes," European Journal of Operational Research, Elsevier, vol. 192(2), pages 692-699, January.
    9. Michael Holzhauser & Sven O. Krumke & Clemens Thielen, 2016. "Budget-constrained minimum cost flows," Journal of Combinatorial Optimization, Springer, vol. 31(4), pages 1720-1745, May.
    10. Jianzhong Zhang & Zhenhong Liu, 2002. "A General Model of Some Inverse Combinatorial Optimization Problems and Its Solution Method Under l ∞ Norm," Journal of Combinatorial Optimization, Springer, vol. 6(2), pages 207-227, June.
    11. Evgeny Gurevsky & Sergey Kovalev & Mikhail Y. Kovalyov, 2021. "Min-max controllable risk problems," 4OR, Springer, vol. 19(1), pages 93-101, March.
    12. Abdul Suleman, 2017. "On ill-conceived initialization in archetypal analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(4), pages 785-808, December.
    13. Andrés Gómez & Oleg A. Prokopyev, 2021. "A Mixed-Integer Fractional Optimization Approach to Best Subset Selection," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 551-565, May.
    14. Akiyoshi Shioura, 2015. "Polynomial-Time Approximation Schemes for Maximizing Gross Substitutes Utility Under Budget Constraints," Mathematics of Operations Research, INFORMS, vol. 40(1), pages 192-225, February.
    15. Houssem R. E. H. Bouchekara & Yusuf A. Sha’aban & Mohammad S. Shahriar & Makbul A. M. Ramli & Abdullahi A. Mas’ud, 2023. "Wind Farm Layout Optimization/Expansion with Real Wind Turbines Using a Multi-Objective EA Based on an Enhanced Inverted Generational Distance Metric Combined with the Two-Archive Algorithm 2," Sustainability, MDPI, vol. 15(3), pages 1-32, January.
    16. Randeep Bhatia & Sudipto Guha & Samir Khuller & Yoram J. Sussmann, 1998. "Facility Location with Dynamic Distance Functions," Journal of Combinatorial Optimization, Springer, vol. 2(3), pages 199-217, September.
    17. Viswanath Nagarajan & Baruch Schieber & Hadas Shachnai, 2020. "The Euclidean k -Supplier Problem," Mathematics of Operations Research, INFORMS, vol. 45(1), pages 1-14, February.
    18. Kobbi Nissim & Rann Smorodinsky & Moshe Tennenholtz, 2018. "Segmentation, Incentives, and Privacy," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1252-1268, November.
    19. Danny Z. Chen & Ovidiu Daescu & Yang Dai & Naoki Katoh & Xiaodong Wu & Jinhui Xu, 2005. "Efficient Algorithms and Implementations for Optimizing the Sum of Linear Fractional Functions, with Applications," Journal of Combinatorial Optimization, Springer, vol. 9(1), pages 69-90, February.
    20. Braun, Marlon & Shukla, Pradyumn, 2024. "On cone-based decompositions of proper Pareto-optimality in multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 317(2), pages 592-602.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:86:y:2023:i:2:d:10.1007_s10898-023-01280-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.