IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i10p2342-d1149430.html
   My bibliography  Save this article

Intrusion Detection in Networks by Wasserstein Enabled Many-Objective Evolutionary Algorithms

Author

Listed:
  • Andrea Ponti

    (Department of Economics, Management and Statistics, University of Milano-Bicocca, 20126 Milan, Italy
    Consorzio Milano Ricerche, 20125 Milan, Italy)

  • Antonio Candelieri

    (Department of Economics, Management and Statistics, University of Milano-Bicocca, 20126 Milan, Italy)

  • Ilaria Giordani

    (Department of Computer Science, Systems and Communication, University of Milano-Bicocca, 20126 Milan, Italy
    Oaks S.R.L., 20125 Milan, Italy)

  • Francesco Archetti

    (Consorzio Milano Ricerche, 20125 Milan, Italy
    Department of Computer Science, Systems and Communication, University of Milano-Bicocca, 20126 Milan, Italy)

Abstract

This manuscript explores the problem of deploying sensors in networks to detect intrusions as effectively as possible. In water distribution networks, intrusions can cause a spread of contaminants over the whole network; we are searching for locations for where to install sensors in order to detect intrusion contaminations as early as possible. Monitoring epidemics can also be modelled into this framework. Given a network of interactions between people, we want to identify which “small” set of people to monitor in order to enable early outbreak detection. In the domain of the Web, bloggers publish posts and refer to other bloggers using hyperlinks. Sensors are a set of blogs that catch links to most of the stories that propagate over the blogosphere. In the sensor placement problem, we have to manage a trade-off between different objectives. To solve the resulting multi-objective optimization problem, we use a multi-objective evolutionary algorithm based on the Tchebycheff scalarization (MOEA/D). The key contribution of this paper is to interpret the weight vectors in the scalarization as probability measures. This allows us to use the Wasserstein distance to drive their selection instead of the Euclidean distance. This approach results not only in a new algorithm (MOEA/D/W) with better computational results than standard MOEA/D but also in a new design approach that can be generalized to other evolutionary algorithms.

Suggested Citation

  • Andrea Ponti & Antonio Candelieri & Ilaria Giordani & Francesco Archetti, 2023. "Intrusion Detection in Networks by Wasserstein Enabled Many-Objective Evolutionary Algorithms," Mathematics, MDPI, vol. 11(10), pages 1-14, May.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:10:p:2342-:d:1149430
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/10/2342/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/10/2342/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Beume, Nicola & Naujoks, Boris & Emmerich, Michael, 2007. "SMS-EMOA: Multiobjective selection based on dominated hypervolume," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1653-1669, September.
    2. Deb, Kalyanmoy & Myburgh, Christie, 2017. "A population-based fast algorithm for a billion-dimensional resource allocation problem with integer variables," European Journal of Operational Research, Elsevier, vol. 261(2), pages 460-474.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hang Xu & Chaohui Huang & Jianbing Lin & Min Lin & Huahui Zhang & Rongbin Xu, 2024. "A Multi-Task Decomposition-Based Evolutionary Algorithm for Tackling High-Dimensional Bi-Objective Feature Selection," Mathematics, MDPI, vol. 12(8), pages 1-23, April.
    2. Hang Xu, 2024. "A Dynamic Tasking-Based Evolutionary Algorithm for Bi-Objective Feature Selection," Mathematics, MDPI, vol. 12(10), pages 1-23, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liagkouras, Konstantinos & Metaxiotis, Konstantinos, 2021. "Improving multi-objective algorithms performance by emulating behaviors from the human social analogue in candidate solutions," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1019-1036.
    2. Gong, Wenyin & Cai, Zhihua, 2009. "An improved multiobjective differential evolution based on Pareto-adaptive [epsilon]-dominance and orthogonal design," European Journal of Operational Research, Elsevier, vol. 198(2), pages 576-601, October.
    3. Yunsong Han & Hong Yu & Cheng Sun, 2017. "Simulation-Based Multiobjective Optimization of Timber-Glass Residential Buildings in Severe Cold Regions," Sustainability, MDPI, vol. 9(12), pages 1-18, December.
    4. Sergio Cabello, 2023. "Faster distance-based representative skyline and k-center along pareto front in the plane," Journal of Global Optimization, Springer, vol. 86(2), pages 441-466, June.
    5. Houssem R. E. H. Bouchekara & Yusuf A. Sha’aban & Mohammad S. Shahriar & Makbul A. M. Ramli & Abdullahi A. Mas’ud, 2023. "Wind Farm Layout Optimization/Expansion with Real Wind Turbines Using a Multi-Objective EA Based on an Enhanced Inverted Generational Distance Metric Combined with the Two-Archive Algorithm 2," Sustainability, MDPI, vol. 15(3), pages 1-32, January.
    6. Braun, Marlon & Shukla, Pradyumn, 2024. "On cone-based decompositions of proper Pareto-optimality in multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 317(2), pages 592-602.
    7. Jesús Martínez-Frutos & David Herrero-Pérez, 2016. "Kriging-based infill sampling criterion for constraint handling in multi-objective optimization," Journal of Global Optimization, Springer, vol. 64(1), pages 97-115, January.
    8. José Antonio Castán Rocha & Alejandro Santiago & Alejandro H. García-Ruiz & Jesús David Terán-Villanueva & Salvador Ibarra Martínez & Mayra Guadalupe Treviño Berrones, 2024. "Pareto Approximation Empirical Results of Energy-Aware Optimization for Precedence-Constrained Task Scheduling Considering Switching Off Completely Idle Machines," Mathematics, MDPI, vol. 12(23), pages 1-53, November.
    9. Dubois-Lacoste, Jérémie & López-Ibáñez, Manuel & Stützle, Thomas, 2015. "Anytime Pareto local search," European Journal of Operational Research, Elsevier, vol. 243(2), pages 369-385.
    10. Hyoungjin Kim & Meng-Sing Liou, 2013. "New fitness sharing approach for multi-objective genetic algorithms," Journal of Global Optimization, Springer, vol. 55(3), pages 579-595, March.
    11. Miettinen, Kaisa & Molina, Julián & González, Mercedes & Hernández-Díaz, Alfredo & Caballero, Rafael, 2009. "Using box indices in supporting comparison in multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 197(1), pages 17-24, August.
    12. Andrea Ferigo & Giovanni Iacca, 2020. "A GPU-Enabled Compact Genetic Algorithm for Very Large-Scale Optimization Problems," Mathematics, MDPI, vol. 8(5), pages 1-26, May.
    13. Tangpattanakul, Panwadee & Jozefowiez, Nicolas & Lopez, Pierre, 2015. "A multi-objective local search heuristic for scheduling Earth observations taken by an agile satellite," European Journal of Operational Research, Elsevier, vol. 245(2), pages 542-554.
    14. Luan, Wenpeng & Tian, Longfei & Zhao, Bochao, 2023. "Leveraging hybrid probabilistic multi-objective evolutionary algorithm for dynamic tariff design," Applied Energy, Elsevier, vol. 342(C).
    15. Cosson, Raphaël & Santana, Roberto & Derbel, Bilel & Liefooghe, Arnaud, 2024. "On bi-objective combinatorial optimization with heterogeneous objectives," European Journal of Operational Research, Elsevier, vol. 319(1), pages 89-101.
    16. Allmendinger, Richard & Handl, Julia & Knowles, Joshua, 2015. "Multiobjective optimization: When objectives exhibit non-uniform latencies," European Journal of Operational Research, Elsevier, vol. 243(2), pages 497-513.
    17. Weihua Qian & Hang Xu & Houjin Chen & Lvqing Yang & Yuanguo Lin & Rui Xu & Mulan Yang & Minghong Liao, 2024. "A Synergistic MOEA Algorithm with GANs for Complex Data Analysis," Mathematics, MDPI, vol. 12(2), pages 1-30, January.
    18. Rahat, Alma A.M. & Wang, Chunlin & Everson, Richard M. & Fieldsend, Jonathan E., 2018. "Data-driven multi-objective optimisation of coal-fired boiler combustion systems," Applied Energy, Elsevier, vol. 229(C), pages 446-458.
    19. Raimundo, Marcos M. & Ferreira, Paulo A.V. & Von Zuben, Fernando J., 2020. "An extension of the non-inferior set estimation algorithm for many objectives," European Journal of Operational Research, Elsevier, vol. 284(1), pages 53-66.
    20. Xiang Yu & Xueqing Zhang, 2017. "Multiswarm comprehensive learning particle swarm optimization for solving multiobjective optimization problems," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:10:p:2342-:d:1149430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.