IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i23p3733-d1531178.html
   My bibliography  Save this article

Pareto Approximation Empirical Results of Energy-Aware Optimization for Precedence-Constrained Task Scheduling Considering Switching Off Completely Idle Machines

Author

Listed:
  • José Antonio Castán Rocha

    (Faculty of Engineering Tampico, Autonomous University of Tamaulipas, Centro Universitario Sur, Tampico 89109, Mexico)

  • Alejandro Santiago

    (Faculty of Engineering Tampico, Autonomous University of Tamaulipas, Centro Universitario Sur, Tampico 89109, Mexico)

  • Alejandro H. García-Ruiz

    (Faculty of Engineering Tampico, Autonomous University of Tamaulipas, Centro Universitario Sur, Tampico 89109, Mexico)

  • Jesús David Terán-Villanueva

    (Faculty of Engineering Tampico, Autonomous University of Tamaulipas, Centro Universitario Sur, Tampico 89109, Mexico)

  • Salvador Ibarra Martínez

    (Faculty of Engineering Tampico, Autonomous University of Tamaulipas, Centro Universitario Sur, Tampico 89109, Mexico)

  • Mayra Guadalupe Treviño Berrones

    (Faculty of Engineering Tampico, Autonomous University of Tamaulipas, Centro Universitario Sur, Tampico 89109, Mexico)

Abstract

Recent advances in cloud computing, large language models, and deep learning have started a race to create massive High-Performance Computing (HPC) centers worldwide. These centers increase in energy consumption proportionally to their computing capabilities; for example, according to the top 500 organization, the HPC centers Frontier, Aurora, and Super Computer Fugaku report energy consumptions of 22,786 kW, 38,698 kW, and 29,899 kW, respectively. Currently, energy-aware scheduling is a topic of interest to many researchers. However, as far as we know, this work is the first approach considering the idle energy consumption by the HPC units and the possibility of turning off unused units entirely, driven by a quantitative objective function. We found that even when turning off unused machines, the objectives of makespan and energy consumption still conflict and, therefore, their multi-objective optimization nature. This work presents empirical results for AGEMOEA, AGEMOEA2, GWASFGA, MOCell, MOMBI, MOMBI2, NSGA2, and SMS-EMOA. The best-performing algorithm is MOCell for the 400 real scheduling problem tests. In contrast, the best-performing algorithm is GWASFGA for a small-instance synthetic testbed.

Suggested Citation

  • José Antonio Castán Rocha & Alejandro Santiago & Alejandro H. García-Ruiz & Jesús David Terán-Villanueva & Salvador Ibarra Martínez & Mayra Guadalupe Treviño Berrones, 2024. "Pareto Approximation Empirical Results of Energy-Aware Optimization for Precedence-Constrained Task Scheduling Considering Switching Off Completely Idle Machines," Mathematics, MDPI, vol. 12(23), pages 1-53, November.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:23:p:3733-:d:1531178
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/23/3733/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/23/3733/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Beume, Nicola & Naujoks, Boris & Emmerich, Michael, 2007. "SMS-EMOA: Multiobjective selection based on dominated hypervolume," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1653-1669, September.
    2. Ana Ruiz & Rubén Saborido & Mariano Luque, 2015. "A preference-based evolutionary algorithm for multiobjective optimization: the weighting achievement scalarizing function genetic algorithm," Journal of Global Optimization, Springer, vol. 62(1), pages 101-129, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liagkouras, Konstantinos & Metaxiotis, Konstantinos, 2021. "Improving multi-objective algorithms performance by emulating behaviors from the human social analogue in candidate solutions," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1019-1036.
    2. Gong, Wenyin & Cai, Zhihua, 2009. "An improved multiobjective differential evolution based on Pareto-adaptive [epsilon]-dominance and orthogonal design," European Journal of Operational Research, Elsevier, vol. 198(2), pages 576-601, October.
    3. Andrea Ponti & Antonio Candelieri & Ilaria Giordani & Francesco Archetti, 2023. "Intrusion Detection in Networks by Wasserstein Enabled Many-Objective Evolutionary Algorithms," Mathematics, MDPI, vol. 11(10), pages 1-14, May.
    4. Yunsong Han & Hong Yu & Cheng Sun, 2017. "Simulation-Based Multiobjective Optimization of Timber-Glass Residential Buildings in Severe Cold Regions," Sustainability, MDPI, vol. 9(12), pages 1-18, December.
    5. Sergio Cabello, 2023. "Faster distance-based representative skyline and k-center along pareto front in the plane," Journal of Global Optimization, Springer, vol. 86(2), pages 441-466, June.
    6. Houssem R. E. H. Bouchekara & Yusuf A. Sha’aban & Mohammad S. Shahriar & Makbul A. M. Ramli & Abdullahi A. Mas’ud, 2023. "Wind Farm Layout Optimization/Expansion with Real Wind Turbines Using a Multi-Objective EA Based on an Enhanced Inverted Generational Distance Metric Combined with the Two-Archive Algorithm 2," Sustainability, MDPI, vol. 15(3), pages 1-32, January.
    7. Braun, Marlon & Shukla, Pradyumn, 2024. "On cone-based decompositions of proper Pareto-optimality in multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 317(2), pages 592-602.
    8. Jesús Martínez-Frutos & David Herrero-Pérez, 2016. "Kriging-based infill sampling criterion for constraint handling in multi-objective optimization," Journal of Global Optimization, Springer, vol. 64(1), pages 97-115, January.
    9. Dubois-Lacoste, Jérémie & López-Ibáñez, Manuel & Stützle, Thomas, 2015. "Anytime Pareto local search," European Journal of Operational Research, Elsevier, vol. 243(2), pages 369-385.
    10. Hyoungjin Kim & Meng-Sing Liou, 2013. "New fitness sharing approach for multi-objective genetic algorithms," Journal of Global Optimization, Springer, vol. 55(3), pages 579-595, March.
    11. Lu Chen & Kaisa Miettinen & Bin Xin & Vesa Ojalehto, 2023. "Comparing reference point based interactive multiobjective optimization methods without a human decision maker," Journal of Global Optimization, Springer, vol. 85(3), pages 757-788, March.
    12. Miettinen, Kaisa & Molina, Julián & González, Mercedes & Hernández-Díaz, Alfredo & Caballero, Rafael, 2009. "Using box indices in supporting comparison in multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 197(1), pages 17-24, August.
    13. Tangpattanakul, Panwadee & Jozefowiez, Nicolas & Lopez, Pierre, 2015. "A multi-objective local search heuristic for scheduling Earth observations taken by an agile satellite," European Journal of Operational Research, Elsevier, vol. 245(2), pages 542-554.
    14. Luan, Wenpeng & Tian, Longfei & Zhao, Bochao, 2023. "Leveraging hybrid probabilistic multi-objective evolutionary algorithm for dynamic tariff design," Applied Energy, Elsevier, vol. 342(C).
    15. Cosson, Raphaël & Santana, Roberto & Derbel, Bilel & Liefooghe, Arnaud, 2024. "On bi-objective combinatorial optimization with heterogeneous objectives," European Journal of Operational Research, Elsevier, vol. 319(1), pages 89-101.
    16. Allmendinger, Richard & Handl, Julia & Knowles, Joshua, 2015. "Multiobjective optimization: When objectives exhibit non-uniform latencies," European Journal of Operational Research, Elsevier, vol. 243(2), pages 497-513.
    17. Weihua Qian & Hang Xu & Houjin Chen & Lvqing Yang & Yuanguo Lin & Rui Xu & Mulan Yang & Minghong Liao, 2024. "A Synergistic MOEA Algorithm with GANs for Complex Data Analysis," Mathematics, MDPI, vol. 12(2), pages 1-30, January.
    18. Rahat, Alma A.M. & Wang, Chunlin & Everson, Richard M. & Fieldsend, Jonathan E., 2018. "Data-driven multi-objective optimisation of coal-fired boiler combustion systems," Applied Energy, Elsevier, vol. 229(C), pages 446-458.
    19. S. Dutta & B.C. Sahoo & Rajashree Mishra & S. Acharya, 2016. "Fuzzy Stochastic Genetic Algorithm for Obtaining Optimum Crops Pattern and Water Balance in a Farm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4097-4123, September.
    20. Raimundo, Marcos M. & Ferreira, Paulo A.V. & Von Zuben, Fernando J., 2020. "An extension of the non-inferior set estimation algorithm for many objectives," European Journal of Operational Research, Elsevier, vol. 284(1), pages 53-66.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:23:p:3733-:d:1531178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.