IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v63y2016i2p461-493.html
   My bibliography  Save this article

Copositivity tests based on the linear complementarity problem

Author

Listed:
  • Carmo Brás
  • Gabriele Eichfelder
  • Joaquim Júdice

Abstract

We present copositivity tests based on new necessary and sufficient conditions which require the solution of linear complementarity problems (LCP). We propose methodologies involving Lemke’s method, an enumerative algorithm and a linear mixed-integer programming formulation to solve the required LCPs. Moreover, we discuss a new necessary condition for (strict) copositivity based on solving a linear program, which can be used as a preprocessing step. The algorithms with these three different variants are thoroughly applied to test matrices from the literature and to max-clique instances with matrices of order up to $$496\times 496$$ 496 × 496 . We compare our procedures with three other copositivity tests from the literature as well as with a general global optimization solver. The numerical results are very promising and equally good and in many cases better than the results reported elsewhere. Copyright Springer Science+Business Media New York 2016

Suggested Citation

  • Carmo Brás & Gabriele Eichfelder & Joaquim Júdice, 2016. "Copositivity tests based on the linear complementarity problem," Computational Optimization and Applications, Springer, vol. 63(2), pages 461-493, March.
  • Handle: RePEc:spr:coopap:v:63:y:2016:i:2:p:461-493
    DOI: 10.1007/s10589-015-9772-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-015-9772-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-015-9772-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bomze, Immanuel M., 2012. "Copositive optimization – Recent developments and applications," European Journal of Operational Research, Elsevier, vol. 216(3), pages 509-520.
    2. Joaquim Júdice & Ana Faustino & Isabel Ribeiro, 2002. "On the solution of NP-hard linear complementarity problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 10(1), pages 125-145, June.
    3. Julia Sponsel & Stefan Bundfuss & Mirjam Dür, 2012. "An improved algorithm to test copositivity," Journal of Global Optimization, Springer, vol. 52(3), pages 537-551, March.
    4. Immanuel Bomze & Werner Schachinger & Gabriele Uchida, 2012. "Think co(mpletely)positive ! Matrix properties, examples and a clustered bibliography on copositive optimization," Journal of Global Optimization, Springer, vol. 52(3), pages 423-445, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Orizon Pereira Ferreira & Yingchao Gao & Sándor Zoltán Németh & Petra Renáta Rigó, 2024. "Gradient projection method on the sphere, complementarity problems and copositivity," Journal of Global Optimization, Springer, vol. 90(1), pages 1-25, September.
    2. Janez Povh & Janez Žerovnik, 2021. "On sufficient properties of sufficient matrices," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(3), pages 809-822, September.
    3. Darvay, Zsolt & Illés, Tibor & Rigó, Petra Renáta, 2022. "Predictor-corrector interior-point algorithm for P*(κ)-linear complementarity problems based on a new type of algebraic equivalent transformation technique," European Journal of Operational Research, Elsevier, vol. 298(1), pages 25-35.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bomze, Immanuel M. & Gabl, Markus, 2023. "Optimization under uncertainty and risk: Quadratic and copositive approaches," European Journal of Operational Research, Elsevier, vol. 310(2), pages 449-476.
    2. Andrey Afonin & Roland Hildebrand & Peter J. C. Dickinson, 2021. "The extreme rays of the $$6\times 6$$ 6 × 6 copositive cone," Journal of Global Optimization, Springer, vol. 79(1), pages 153-190, January.
    3. Immanuel M. Bomze & Bo Peng, 2023. "Conic formulation of QPCCs applied to truly sparse QPs," Computational Optimization and Applications, Springer, vol. 84(3), pages 703-735, April.
    4. Orizon Pereira Ferreira & Yingchao Gao & Sándor Zoltán Németh & Petra Renáta Rigó, 2024. "Gradient projection method on the sphere, complementarity problems and copositivity," Journal of Global Optimization, Springer, vol. 90(1), pages 1-25, September.
    5. Akihiro Tanaka & Akiko Yoshise, 2018. "LP-based tractable subcones of the semidefinite plus nonnegative cone," Annals of Operations Research, Springer, vol. 265(1), pages 155-182, June.
    6. Zhijian Lai & Akiko Yoshise, 2022. "Completely positive factorization by a Riemannian smoothing method," Computational Optimization and Applications, Springer, vol. 83(3), pages 933-966, December.
    7. Peter Dickinson & Luuk Gijben, 2014. "On the computational complexity of membership problems for the completely positive cone and its dual," Computational Optimization and Applications, Springer, vol. 57(2), pages 403-415, March.
    8. Abdeljelil Baccari & Mourad Naffouti, 2016. "Copositivity and Sparsity Relations Using Spectral Properties," Journal of Optimization Theory and Applications, Springer, vol. 171(3), pages 998-1007, December.
    9. Alexander Engau & Miguel Anjos & Immanuel Bomze, 2013. "Constraint selection in a build-up interior-point cutting-plane method for solving relaxations of the stable-set problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 78(1), pages 35-59, August.
    10. Faizan Ahmed & Mirjam Dür & Georg Still, 2013. "Copositive Programming via Semi-Infinite Optimization," Journal of Optimization Theory and Applications, Springer, vol. 159(2), pages 322-340, November.
    11. Mohammadreza Safi & Seyed Saeed Nabavi & Richard J. Caron, 2021. "A modified simplex partition algorithm to test copositivity," Journal of Global Optimization, Springer, vol. 81(3), pages 645-658, November.
    12. Deng, Zhibin & Fang, Shu-Cherng & Jin, Qingwei & Xing, Wenxun, 2013. "Detecting copositivity of a symmetric matrix by an adaptive ellipsoid-based approximation scheme," European Journal of Operational Research, Elsevier, vol. 229(1), pages 21-28.
    13. Immanuel M. Bomze & Michael Kahr & Markus Leitner, 2021. "Trust Your Data or Not—StQP Remains StQP: Community Detection via Robust Standard Quadratic Optimization," Mathematics of Operations Research, INFORMS, vol. 46(1), pages 301-316, February.
    14. Wong, Man Hong & Zhang, Shuzhong, 2014. "On distributional robust probability functions and their computations," European Journal of Operational Research, Elsevier, vol. 233(1), pages 23-33.
    15. Haibin Chen & Zheng-Hai Huang & Liqun Qi, 2017. "Copositivity Detection of Tensors: Theory and Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 174(3), pages 746-761, September.
    16. Haibin Chen & Zheng-Hai Huang & Liqun Qi, 2018. "Copositive tensor detection and its applications in physics and hypergraphs," Computational Optimization and Applications, Springer, vol. 69(1), pages 133-158, January.
    17. Hoai Le Thi & Tao Pham Dinh, 2011. "On solving Linear Complementarity Problems by DC programming and DCA," Computational Optimization and Applications, Springer, vol. 50(3), pages 507-524, December.
    18. Anwa Zhou & Jinyan Fan, 2015. "Interiors of completely positive cones," Journal of Global Optimization, Springer, vol. 63(4), pages 653-675, December.
    19. O. I. Kostyukova & T. V. Tchemisova, 2022. "On strong duality in linear copositive programming," Journal of Global Optimization, Springer, vol. 83(3), pages 457-480, July.
    20. Immanuel Bomze & Werner Schachinger & Gabriele Uchida, 2012. "Think co(mpletely)positive ! Matrix properties, examples and a clustered bibliography on copositive optimization," Journal of Global Optimization, Springer, vol. 52(3), pages 423-445, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:63:y:2016:i:2:p:461-493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.