IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v216y2012i3p509-520.html
   My bibliography  Save this article

Copositive optimization – Recent developments and applications

Author

Listed:
  • Bomze, Immanuel M.

Abstract

Due to its versatility, copositive optimization receives increasing interest in the Operational Research community, and is a rapidly expanding and fertile field of research. It is a special case of conic optimization, which consists of minimizing a linear function over a cone subject to linear constraints. The diversity of copositive formulations in different domains of optimization is impressive, since problem classes both in the continuous and discrete world, as well as both deterministic and stochastic models are covered. Copositivity appears in local and global optimality conditions for quadratic optimization, but can also yield tighter bounds for NP-hard combinatorial optimization problems. Here some of the recent success stories are told, along with principles, algorithms and applications.

Suggested Citation

  • Bomze, Immanuel M., 2012. "Copositive optimization – Recent developments and applications," European Journal of Operational Research, Elsevier, vol. 216(3), pages 509-520.
  • Handle: RePEc:eee:ejores:v:216:y:2012:i:3:p:509-520
    DOI: 10.1016/j.ejor.2011.04.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221711003705
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2011.04.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Klerk, E. & Pasechnik, D.V., 2005. "A Linear Programming Reformulation of the Standard Quadratic Optimization Problem," Discussion Paper 2005-24, Tilburg University, Center for Economic Research.
    2. J. R. Morrison & P. R. Kumar, 1999. "New Linear Program Performance Bounds for Queueing Networks," Journal of Optimization Theory and Applications, Springer, vol. 100(3), pages 575-597, March.
    3. Matsubayashi, Nobuo & Nishino, Hisakazu, 1999. "An application of Lemke's method to a class of Markov decision problems," European Journal of Operational Research, Elsevier, vol. 116(3), pages 584-590, August.
    4. C. Humes & J. Ou & P. R. Kumar, 1997. "The Delay of Open Markovian Queueing Networks: Uniform Functional Bounds, Heavy Traffic Pole Multiplicities, and Stability," Mathematics of Operations Research, INFORMS, vol. 22(4), pages 921-954, November.
    5. de Klerk, E. & Pasechnik, D.V., 2007. "A linear programming reformulation of the standard quadratic optimization problem," Other publications TiSEM c3e74115-b343-4a85-976b-8, Tilburg University, School of Economics and Management.
    6. Etienne Klerk, 2008. "The complexity of optimizing over a simplex, hypercube or sphere: a short survey," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 16(2), pages 111-125, June.
    7. Werner Schachinger & Immanuel Bomze, 2009. "A Conic Duality Frank--Wolfe-Type Theorem via Exact Penalization in Quadratic Optimization," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 83-91, February.
    8. A. E. Ozdaglar & P. Tseng, 2006. "Existence of Global Minima for Constrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 128(3), pages 523-546, March.
    9. de Klerk, E., 2008. "The complexity of optimizing over a simplex, hypercube or sphere : A short survey," Other publications TiSEM 485b6860-cf1d-4cad-97b8-2, Tilburg University, School of Economics and Management.
    10. A. Pinto da Costa & A. Seeger, 2010. "Cone-constrained eigenvalue problems: theory and algorithms," Computational Optimization and Applications, Springer, vol. 45(1), pages 25-57, January.
    11. de Klerk, E. & Pasechnik, D.V. & Schrijver, A., 2007. "Reduction of symmetric semidefinite programs using the regular*-representation," Other publications TiSEM e418158e-b9dd-4372-b84c-e, Tilburg University, School of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Immanuel Bomze & Werner Schachinger & Gabriele Uchida, 2012. "Think co(mpletely)positive ! Matrix properties, examples and a clustered bibliography on copositive optimization," Journal of Global Optimization, Springer, vol. 52(3), pages 423-445, March.
    2. Immanuel M. Bomze & Werner Schachinger & Reinhard Ullrich, 2018. "The Complexity of Simple Models—A Study of Worst and Typical Hard Cases for the Standard Quadratic Optimization Problem," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 651-674, May.
    3. Maziar Salahi, 2010. "Convex optimization approach to a single quadratically constrained quadratic minimization problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 18(2), pages 181-187, June.
    4. Andrea Cristofari & Marianna Santis & Stefano Lucidi & Francesco Rinaldi, 2020. "An active-set algorithmic framework for non-convex optimization problems over the simplex," Computational Optimization and Applications, Springer, vol. 77(1), pages 57-89, September.
    5. X. J. Zheng & X. L. Sun & D. Li, 2010. "Separable Relaxation for Nonconvex Quadratic Integer Programming: Integer Diagonalization Approach," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 463-489, August.
    6. Boglárka G.-Tóth & Eligius M. T. Hendrix & Leocadio G. Casado & Frédéric Messine, 2024. "On Dealing with Minima at the Border of a Simplicial Feasible Area in Simplicial Branch and Bound," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1880-1909, November.
    7. Xiaolong Kuang & Luis F. Zuluaga, 2018. "Completely positive and completely positive semidefinite tensor relaxations for polynomial optimization," Journal of Global Optimization, Springer, vol. 70(3), pages 551-577, March.
    8. W. Ackooij & A. Frangioni & W. Oliveira, 2016. "Inexact stabilized Benders’ decomposition approaches with application to chance-constrained problems with finite support," Computational Optimization and Applications, Springer, vol. 65(3), pages 637-669, December.
    9. de Klerk, E. & Laurent, M., 2010. "Error bounds for some semidefinite programming approaches to polynomial minimization on the hypercube," Other publications TiSEM 619d9658-77df-4b5e-9868-0, Tilburg University, School of Economics and Management.
    10. Lek-Heng Lim, 2017. "Self-concordance is NP-hard," Journal of Global Optimization, Springer, vol. 68(2), pages 357-366, June.
    11. de Klerk, Etienne & Laurent, Monique, 2019. "A survey of semidefinite programming approaches to the generalized problem of moments and their error analysis," Other publications TiSEM d956492f-3e25-4dda-a5e2-e, Tilburg University, School of Economics and Management.
    12. Peter Dickinson & Luuk Gijben, 2014. "On the computational complexity of membership problems for the completely positive cone and its dual," Computational Optimization and Applications, Springer, vol. 57(2), pages 403-415, March.
    13. Immanuel Bomze & Stefan Gollowitzer & E. Yıldırım, 2014. "Rounding on the standard simplex: regular grids for global optimization," Journal of Global Optimization, Springer, vol. 59(2), pages 243-258, July.
    14. Marco Locatelli, 2013. "Approximation algorithm for a class of global optimization problems," Journal of Global Optimization, Springer, vol. 55(1), pages 13-25, January.
    15. Niu, Yi-Shuai & Júdice, Joaquim & Le Thi, Hoai An & Pham, Dinh Tao, 2019. "Improved dc programming approaches for solving the quadratic eigenvalue complementarity problem," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 95-113.
    16. J. R. Morrison & P. R. Kumar, 1999. "New Linear Program Performance Bounds for Queueing Networks," Journal of Optimization Theory and Applications, Springer, vol. 100(3), pages 575-597, March.
    17. D. P. de Farias & B. Van Roy, 2003. "The Linear Programming Approach to Approximate Dynamic Programming," Operations Research, INFORMS, vol. 51(6), pages 850-865, December.
    18. Dimitris Bertsimas & David Gamarnik & Alexander Anatoliy Rikun, 2011. "Performance Analysis of Queueing Networks via Robust Optimization," Operations Research, INFORMS, vol. 59(2), pages 455-466, April.
    19. Brás, Carmo P. & Fukushima, Masao & Iusem, Alfredo N. & Júdice, Joaquim J., 2015. "On the Quadratic Eigenvalue Complementarity Problem over a general convex cone," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 594-608.
    20. Chen Ling & Hongjin He & Liqun Qi, 2016. "On the cone eigenvalue complementarity problem for higher-order tensors," Computational Optimization and Applications, Springer, vol. 63(1), pages 143-168, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:216:y:2012:i:3:p:509-520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.