IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v90y2024i1d10.1007_s10898-024-01390-4.html
   My bibliography  Save this article

Gradient projection method on the sphere, complementarity problems and copositivity

Author

Listed:
  • Orizon Pereira Ferreira

    (IME/UFG)

  • Yingchao Gao

    (University of Birmingham)

  • Sándor Zoltán Németh

    (University of Birmingham)

  • Petra Renáta Rigó

    (Corvinus University of Budapest)

Abstract

By using a constant step-size, the convergence analysis of the gradient projection method on the sphere is presented for a closed spherically convex set. This algorithm is applied to discuss copositivity of operators with respect to cones. This approach can also be used to analyse solvability of nonlinear cone-complementarity problems. To our best knowledge this is the first numerical method related to the copositivity of operators with respect to the positive semidefinite cone. Numerical results concerning the copositivity of operators are also provided.

Suggested Citation

  • Orizon Pereira Ferreira & Yingchao Gao & Sándor Zoltán Németh & Petra Renáta Rigó, 2024. "Gradient projection method on the sphere, complementarity problems and copositivity," Journal of Global Optimization, Springer, vol. 90(1), pages 1-25, September.
  • Handle: RePEc:spr:jglopt:v:90:y:2024:i:1:d:10.1007_s10898-024-01390-4
    DOI: 10.1007/s10898-024-01390-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-024-01390-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-024-01390-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bomze, Immanuel M., 2012. "Copositive optimization – Recent developments and applications," European Journal of Operational Research, Elsevier, vol. 216(3), pages 509-520.
    2. Hiroyuki Sato, 2023. "Riemannian optimization on unit sphere with p-norm and its applications," Computational Optimization and Applications, Springer, vol. 85(3), pages 897-935, July.
    3. Pedro Gajardo & Alberto Seeger, 2014. "Equilibrium problems involving the Lorentz cone," Journal of Global Optimization, Springer, vol. 58(2), pages 321-340, February.
    4. Julia Sponsel & Stefan Bundfuss & Mirjam Dür, 2012. "An improved algorithm to test copositivity," Journal of Global Optimization, Springer, vol. 52(3), pages 537-551, March.
    5. Sándor Zoltán Németh & George Isac, 2008. "Scalar and Asymptotic Scalar Derivatives," Springer Optimization and Its Applications, Springer, number 978-0-387-73988-5, December.
    6. Carmo Brás & Gabriele Eichfelder & Joaquim Júdice, 2016. "Copositivity tests based on the linear complementarity problem," Computational Optimization and Applications, Springer, vol. 63(2), pages 461-493, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bomze, Immanuel M. & Gabl, Markus, 2023. "Optimization under uncertainty and risk: Quadratic and copositive approaches," European Journal of Operational Research, Elsevier, vol. 310(2), pages 449-476.
    2. Carmo Brás & Gabriele Eichfelder & Joaquim Júdice, 2016. "Copositivity tests based on the linear complementarity problem," Computational Optimization and Applications, Springer, vol. 63(2), pages 461-493, March.
    3. Akihiro Tanaka & Akiko Yoshise, 2018. "LP-based tractable subcones of the semidefinite plus nonnegative cone," Annals of Operations Research, Springer, vol. 265(1), pages 155-182, June.
    4. Mohammadreza Safi & Seyed Saeed Nabavi & Richard J. Caron, 2021. "A modified simplex partition algorithm to test copositivity," Journal of Global Optimization, Springer, vol. 81(3), pages 645-658, November.
    5. Wong, Man Hong & Zhang, Shuzhong, 2014. "On distributional robust probability functions and their computations," European Journal of Operational Research, Elsevier, vol. 233(1), pages 23-33.
    6. Haibin Chen & Zheng-Hai Huang & Liqun Qi, 2017. "Copositivity Detection of Tensors: Theory and Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 174(3), pages 746-761, September.
    7. O. I. Kostyukova & T. V. Tchemisova, 2022. "On strong duality in linear copositive programming," Journal of Global Optimization, Springer, vol. 83(3), pages 457-480, July.
    8. O. P. Ferreira & S. Z. Németh, 2018. "How to project onto extended second order cones," Journal of Global Optimization, Springer, vol. 70(4), pages 707-718, April.
    9. Immanuel Bomze & Werner Schachinger & Gabriele Uchida, 2012. "Think co(mpletely)positive ! Matrix properties, examples and a clustered bibliography on copositive optimization," Journal of Global Optimization, Springer, vol. 52(3), pages 423-445, March.
    10. Darvay, Zsolt & Illés, Tibor & Rigó, Petra Renáta, 2022. "Predictor-corrector interior-point algorithm for P*(κ)-linear complementarity problems based on a new type of algebraic equivalent transformation technique," European Journal of Operational Research, Elsevier, vol. 298(1), pages 25-35.
    11. O. P. Ferreira & S. Z. Németh, 2019. "On the spherical convexity of quadratic functions," Journal of Global Optimization, Springer, vol. 73(3), pages 537-545, March.
    12. Li, Xiaobo & Natarajan, Karthik & Teo, Chung-Piaw & Zheng, Zhichao, 2014. "Distributionally robust mixed integer linear programs: Persistency models with applications," European Journal of Operational Research, Elsevier, vol. 233(3), pages 459-473.
    13. O. I. Kostyukova & T. V. Tchemisova & O. S. Dudina, 2024. "On the Uniform Duality in Copositive Optimization," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1940-1966, November.
    14. Immanuel Bomze & Markus Gabl, 2021. "Interplay of non-convex quadratically constrained problems with adjustable robust optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(1), pages 115-151, February.
    15. Jean-Baptiste Hiriart-Urruty & Hai Le, 2013. "A variational approach of the rank function," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(2), pages 207-240, July.
    16. de Klerk, Etienne & Badenbroek, Riley, 2022. "Simulated annealing with hit-and-run for convex optimization: complexity analysis and practical perspectives," Other publications TiSEM 323b4588-65e0-4889-a555-9, Tilburg University, School of Economics and Management.
    17. Zhijian Lai & Akiko Yoshise, 2022. "Completely positive factorization by a Riemannian smoothing method," Computational Optimization and Applications, Springer, vol. 83(3), pages 933-966, December.
    18. Janez Povh & Janez Žerovnik, 2021. "On sufficient properties of sufficient matrices," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(3), pages 809-822, September.
    19. Tiago Andrade & Fabricio Oliveira & Silvio Hamacher & Andrew Eberhard, 2019. "Enhancing the normalized multiparametric disaggregation technique for mixed-integer quadratic programming," Journal of Global Optimization, Springer, vol. 73(4), pages 701-722, April.
    20. Andreani, R. & Júdice, J.J. & Martínez, J.M. & Martini, T., 2016. "Feasibility problems with complementarity constraints," European Journal of Operational Research, Elsevier, vol. 249(1), pages 41-54.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:90:y:2024:i:1:d:10.1007_s10898-024-01390-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.