IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v78y2013i1p35-59.html
   My bibliography  Save this article

Constraint selection in a build-up interior-point cutting-plane method for solving relaxations of the stable-set problem

Author

Listed:
  • Alexander Engau
  • Miguel Anjos
  • Immanuel Bomze

Abstract

The stable-set problem is an NP-hard problem that arises in numerous areas such as social networking, electrical engineering, environmental forest planning, bioinformatics clustering and prediction, and computational chemistry. While some relaxations provide high-quality bounds, they result in very large and expensive conic optimization problems. We describe and test an integrated interior-point cutting-plane method that efficiently handles the large number of nonnegativity constraints in the popular doubly-nonnegative relaxation. This algorithm identifies relevant inequalities dynamically and selectively adds new constraints in a build-up fashion. We present computational results showing the significant benefits of this approach in comparison to a standard interior-point cutting-plane method. Copyright Springer-Verlag Berlin Heidelberg 2013

Suggested Citation

  • Alexander Engau & Miguel Anjos & Immanuel Bomze, 2013. "Constraint selection in a build-up interior-point cutting-plane method for solving relaxations of the stable-set problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 78(1), pages 35-59, August.
  • Handle: RePEc:spr:mathme:v:78:y:2013:i:1:p:35-59
    DOI: 10.1007/s00186-013-0431-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00186-013-0431-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00186-013-0431-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexander Engau, 2012. "Recent Progress in Interior-Point Methods: Cutting-Plane Algorithms and Warm Starts," International Series in Operations Research & Management Science, in: Miguel F. Anjos & Jean B. Lasserre (ed.), Handbook on Semidefinite, Conic and Polynomial Optimization, chapter 0, pages 471-498, Springer.
    2. Bomze, Immanuel M., 2012. "Copositive optimization – Recent developments and applications," European Journal of Operational Research, Elsevier, vol. 216(3), pages 509-520.
    3. Klerk, Etienne de, 2010. "Exploiting special structure in semidefinite programming: A survey of theory and applications," European Journal of Operational Research, Elsevier, vol. 201(1), pages 1-10, February.
    4. Miguel F. Anjos & Anthony Vannelli, 2008. "Computing Globally Optimal Solutions for Single-Row Layout Problems Using Semidefinite Programming and Cutting Planes," INFORMS Journal on Computing, INFORMS, vol. 20(4), pages 611-617, November.
    5. John A. Kaliski & Yinyu Ye, 1993. "A Short-Cut Potential Reduction Algorithm for Linear Programming," Management Science, INFORMS, vol. 39(6), pages 757-776, June.
    6. Immanuel Bomze & Werner Schachinger & Gabriele Uchida, 2012. "Think co(mpletely)positive ! Matrix properties, examples and a clustered bibliography on copositive optimization," Journal of Global Optimization, Springer, vol. 52(3), pages 423-445, March.
    7. Francisco Barahona & Andrés Weintraub & Rafael Epstein, 1992. "Habitat Dispersion in Forest Planning and the Stable Set Problem," Operations Research, INFORMS, vol. 40(1-supplem), pages 14-21, February.
    8. Fischer, I. & Gruber, G. & Rendl, F. & Sotirov, R., 2006. "Computational experience with a bundle approach for semidenfinite cutting plane relaxations of max-cut and equipartition," Other publications TiSEM 03dfd8c3-9216-4c75-8921-3, Tilburg University, School of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Markus Chimani & Philipp Hungerländer, 2013. "Exact Approaches to Multilevel Vertical Orderings," INFORMS Journal on Computing, INFORMS, vol. 25(4), pages 611-624, November.
    2. Andrey Afonin & Roland Hildebrand & Peter J. C. Dickinson, 2021. "The extreme rays of the $$6\times 6$$ 6 × 6 copositive cone," Journal of Global Optimization, Springer, vol. 79(1), pages 153-190, January.
    3. Immanuel M. Bomze & Bo Peng, 2023. "Conic formulation of QPCCs applied to truly sparse QPs," Computational Optimization and Applications, Springer, vol. 84(3), pages 703-735, April.
    4. Bomze, Immanuel M. & Gabl, Markus, 2023. "Optimization under uncertainty and risk: Quadratic and copositive approaches," European Journal of Operational Research, Elsevier, vol. 310(2), pages 449-476.
    5. Anjos, Miguel F. & Vieira, Manuel V.C., 2017. "Mathematical optimization approaches for facility layout problems: The state-of-the-art and future research directions," European Journal of Operational Research, Elsevier, vol. 261(1), pages 1-16.
    6. Philipp Hungerländer & Franz Rendl, 2013. "A computational study and survey of methods for the single-row facility layout problem," Computational Optimization and Applications, Springer, vol. 55(1), pages 1-20, May.
    7. Zhijian Lai & Akiko Yoshise, 2022. "Completely positive factorization by a Riemannian smoothing method," Computational Optimization and Applications, Springer, vol. 83(3), pages 933-966, December.
    8. Peter Dickinson & Luuk Gijben, 2014. "On the computational complexity of membership problems for the completely positive cone and its dual," Computational Optimization and Applications, Springer, vol. 57(2), pages 403-415, March.
    9. Abdeljelil Baccari & Mourad Naffouti, 2016. "Copositivity and Sparsity Relations Using Spectral Properties," Journal of Optimization Theory and Applications, Springer, vol. 171(3), pages 998-1007, December.
    10. Carmo Brás & Gabriele Eichfelder & Joaquim Júdice, 2016. "Copositivity tests based on the linear complementarity problem," Computational Optimization and Applications, Springer, vol. 63(2), pages 461-493, March.
    11. Marcos Goycoolea & Alan T. Murray & Francisco Barahona & Rafael Epstein & Andrés Weintraub, 2005. "Harvest Scheduling Subject to Maximum Area Restrictions: Exploring Exact Approaches," Operations Research, INFORMS, vol. 53(3), pages 490-500, June.
    12. A. R. S. Amaral, 2022. "A heuristic approach for the double row layout problem," Annals of Operations Research, Springer, vol. 316(2), pages 1-36, September.
    13. Ghosh, Diptesh, 2011. "An Exponential Neighborhood Local Search Algorithm for the Single Row Facility Location Problem," IIMA Working Papers WP2011-08-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    14. Dahlbeck, Mirko & Fischer, Anja & Fischer, Frank & Hungerländer, Philipp & Maier, Kerstin, 2023. "Exact approaches for the combined cell layout problem," European Journal of Operational Research, Elsevier, vol. 305(2), pages 530-546.
    15. Hungerländer, Philipp & Anjos, Miguel F., 2015. "A semidefinite optimization-based approach for global optimization of multi-row facility layout," European Journal of Operational Research, Elsevier, vol. 245(1), pages 46-61.
    16. Cheng Lu & Zhibin Deng, 2021. "A branch-and-bound algorithm for solving max-k-cut problem," Journal of Global Optimization, Springer, vol. 81(2), pages 367-389, October.
    17. Janez Povh, 2021. "On the Embed and Project Algorithm for the Graph Bandwidth Problem," Mathematics, MDPI, vol. 9(17), pages 1-15, August.
    18. Uma Kothari & Diptesh Ghosh, 2012. "A Competitive Genetic Algorithm for Single Row Facility Layout," Working Papers id:4915, eSocialSciences.
    19. Campos, Juan S. & Misener, Ruth & Parpas, Panos, 2019. "A multilevel analysis of the Lasserre hierarchy," European Journal of Operational Research, Elsevier, vol. 277(1), pages 32-41.
    20. Ghosh, Diptesh & Kothari, Ravi, 2012. "Population Heuristics for the Corridor Allocation Problem," IIMA Working Papers WP2012-09-02, Indian Institute of Management Ahmedabad, Research and Publication Department.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:78:y:2013:i:1:p:35-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.