IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v81y2021i3d10.1007_s10898-021-01092-1.html
   My bibliography  Save this article

A modified simplex partition algorithm to test copositivity

Author

Listed:
  • Mohammadreza Safi

    (University of Windsor)

  • Seyed Saeed Nabavi

    (Semnan University)

  • Richard J. Caron

    (University of Windsor)

Abstract

A real symmetric matrix A is copositive if $$x^\top Ax\ge 0$$ x ⊤ A x ≥ 0 for all $$x\ge 0$$ x ≥ 0 . As A is copositive if and only if it is copositive on the standard simplex, algorithms to determine copositivity, such as those in Sponsel et al. (J Glob Optim 52:537–551, 2012) and Tanaka and Yoshise (Pac J Optim 11:101–120, 2015), are based upon the creation of increasingly fine simplicial partitions of simplices, testing for copositivity on each. We present a variant that decomposes a simplex $$\bigtriangleup $$ △ , say with n vertices, into a simplex $$\bigtriangleup _1$$ △ 1 and a polyhedron $$\varOmega _1$$ Ω 1 ; and then partitions $$\varOmega _1$$ Ω 1 into a set of at most $$(n-1)$$ ( n - 1 ) simplices. We show that if A is copositive on $$\varOmega _1$$ Ω 1 then A is copositive on $$\bigtriangleup _1$$ △ 1 , allowing us to remove $$\bigtriangleup _1$$ △ 1 from further consideration. Numerical results from examples that arise from the maximum clique problem show a significant reduction in the time needed to establish copositivity of matrices.

Suggested Citation

  • Mohammadreza Safi & Seyed Saeed Nabavi & Richard J. Caron, 2021. "A modified simplex partition algorithm to test copositivity," Journal of Global Optimization, Springer, vol. 81(3), pages 645-658, November.
  • Handle: RePEc:spr:jglopt:v:81:y:2021:i:3:d:10.1007_s10898-021-01092-1
    DOI: 10.1007/s10898-021-01092-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-021-01092-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-021-01092-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Dickinson, 2014. "On the exhaustivity of simplicial partitioning," Journal of Global Optimization, Springer, vol. 58(1), pages 189-203, January.
    2. Julia Sponsel & Stefan Bundfuss & Mirjam Dür, 2012. "An improved algorithm to test copositivity," Journal of Global Optimization, Springer, vol. 52(3), pages 537-551, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akihiro Tanaka & Akiko Yoshise, 2018. "LP-based tractable subcones of the semidefinite plus nonnegative cone," Annals of Operations Research, Springer, vol. 265(1), pages 155-182, June.
    2. Bomze, Immanuel M. & Gabl, Markus, 2023. "Optimization under uncertainty and risk: Quadratic and copositive approaches," European Journal of Operational Research, Elsevier, vol. 310(2), pages 449-476.
    3. Haibin Chen & Zheng-Hai Huang & Liqun Qi, 2017. "Copositivity Detection of Tensors: Theory and Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 174(3), pages 746-761, September.
    4. Orizon Pereira Ferreira & Yingchao Gao & Sándor Zoltán Németh & Petra Renáta Rigó, 2024. "Gradient projection method on the sphere, complementarity problems and copositivity," Journal of Global Optimization, Springer, vol. 90(1), pages 1-25, September.
    5. Carmo Brás & Gabriele Eichfelder & Joaquim Júdice, 2016. "Copositivity tests based on the linear complementarity problem," Computational Optimization and Applications, Springer, vol. 63(2), pages 461-493, March.
    6. Paula Alexandra Amaral & Immanuel M. Bomze, 2019. "Nonconvex min–max fractional quadratic problems under quadratic constraints: copositive relaxations," Journal of Global Optimization, Springer, vol. 75(2), pages 227-245, October.
    7. Gizem Sağol & E. Yıldırım, 2015. "Analysis of copositive optimization based linear programming bounds on standard quadratic optimization," Journal of Global Optimization, Springer, vol. 63(1), pages 37-59, September.
    8. Haibin Chen & Zheng-Hai Huang & Liqun Qi, 2018. "Copositive tensor detection and its applications in physics and hypergraphs," Computational Optimization and Applications, Springer, vol. 69(1), pages 133-158, January.
    9. Peiping Shen & Dianxiao Wu & Kaimin Wang, 2023. "Globally minimizing a class of linear multiplicative forms via simplicial branch-and-bound," Journal of Global Optimization, Springer, vol. 86(2), pages 303-321, June.
    10. Brás, Carmo P. & Fischer, Andreas & Júdice, Joaquim J. & Schönefeld, Klaus & Seifert, Sarah, 2017. "A block active set algorithm with spectral choice line search for the symmetric eigenvalue complementarity problem," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 36-48.
    11. Moslem Zamani, 2019. "A new algorithm for concave quadratic programming," Journal of Global Optimization, Springer, vol. 75(3), pages 655-681, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:81:y:2021:i:3:d:10.1007_s10898-021-01092-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.