IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v175y2017i1d10.1007_s10957-017-1114-3.html
   My bibliography  Save this article

Multi-objective Geometry Optimization of a Gas Cyclone Using Triple-Fidelity Co-Kriging Surrogate Models

Author

Listed:
  • Prashant Singh

    (Uppsala Universitet)

  • Ivo Couckuyt

    (Ghent University-imec)

  • Khairy Elsayed

    (Helwan University
    Vrije Universiteit Brussel)

  • Dirk Deschrijver

    (Ghent University-imec)

  • Tom Dhaene

    (Ghent University-imec)

Abstract

Cyclone separators are widely used in a variety of industrial applications. A low-mass loading gas cyclone is characterized by two performance parameters, namely the Euler and Stokes numbers. These parameters are highly sensitive to the geometrical design parameters defining the cyclone. Optimizing the cyclone geometry therefore is a complex problem. Testing a large number of cyclone geometries is impractical due to time constraints. Experimental data and even computational fluid dynamics simulations are time-consuming to perform, with a single simulation or experiment taking several weeks. Simpler analytical models are therefore often used to expedite the design process. However, this comes at the cost of model accuracy. Existing techniques used for cyclone shape optimization in literature do not take multiple fidelities into account. This work combines cheap-to-evaluate well-known mathematical models of cyclones, available data from computational fluid dynamics simulations and experimental data to build a triple-fidelity recursive co-Kriging model. This model can be used as a surrogate with a multi-objective optimization algorithm to identify a Pareto set of a finite number of solutions. The proposed scheme is applied to optimize the cyclone geometry, parametrized by seven design variables.

Suggested Citation

  • Prashant Singh & Ivo Couckuyt & Khairy Elsayed & Dirk Deschrijver & Tom Dhaene, 2017. "Multi-objective Geometry Optimization of a Gas Cyclone Using Triple-Fidelity Co-Kriging Surrogate Models," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 172-193, October.
  • Handle: RePEc:spr:joptap:v:175:y:2017:i:1:d:10.1007_s10957-017-1114-3
    DOI: 10.1007/s10957-017-1114-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-017-1114-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-017-1114-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ivo Couckuyt & Dirk Deschrijver & Tom Dhaene, 2014. "Fast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimization," Journal of Global Optimization, Springer, vol. 60(3), pages 575-594, November.
    2. Beume, Nicola & Naujoks, Boris & Emmerich, Michael, 2007. "SMS-EMOA: Multiobjective selection based on dominated hypervolume," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1653-1669, September.
    3. Marc C. Kennedy & Anthony O'Hagan, 2001. "Bayesian calibration of computer models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 425-464.
    4. Badhurshah, Rameez & Samad, Abdus, 2015. "Multiple surrogate based optimization of a bidirectional impulse turbine for wave energy conversion," Renewable Energy, Elsevier, vol. 74(C), pages 749-760.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao, Manyu & Zhang, Guohua & Breitkopf, Piotr & Villon, Pierre & Zhang, Weihong, 2018. "Extended Co-Kriging interpolation method based on multi-fidelity data," Applied Mathematics and Computation, Elsevier, vol. 323(C), pages 120-131.
    2. Haddad, Hassan Z. & Mohamed, Mohamed H. & Shabana, Yasser M. & Elsayed, Khairy, 2023. "Optimization of Savonius wind turbine with additional blades by surrogate model using artificial neural networks," Energy, Elsevier, vol. 270(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jesús Martínez-Frutos & David Herrero-Pérez, 2016. "Kriging-based infill sampling criterion for constraint handling in multi-objective optimization," Journal of Global Optimization, Springer, vol. 64(1), pages 97-115, January.
    2. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    3. Liagkouras, Konstantinos & Metaxiotis, Konstantinos, 2021. "Improving multi-objective algorithms performance by emulating behaviors from the human social analogue in candidate solutions," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1019-1036.
    4. Hao Wu & Michael Browne, 2015. "Random Model Discrepancy: Interpretations and Technicalities (A Rejoinder)," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 619-624, September.
    5. Gong, Wenyin & Cai, Zhihua, 2009. "An improved multiobjective differential evolution based on Pareto-adaptive [epsilon]-dominance and orthogonal design," European Journal of Operational Research, Elsevier, vol. 198(2), pages 576-601, October.
    6. Xiaoyu Xiong & Benjamin D. Youngman & Theodoros Economou, 2021. "Data fusion with Gaussian processes for estimation of environmental hazard events," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    7. Andrea Ponti & Antonio Candelieri & Ilaria Giordani & Francesco Archetti, 2023. "Intrusion Detection in Networks by Wasserstein Enabled Many-Objective Evolutionary Algorithms," Mathematics, MDPI, vol. 11(10), pages 1-14, May.
    8. Petropoulos, G. & Wooster, M.J. & Carlson, T.N. & Kennedy, M.C. & Scholze, M., 2009. "A global Bayesian sensitivity analysis of the 1d SimSphere soil–vegetation–atmospheric transfer (SVAT) model using Gaussian model emulation," Ecological Modelling, Elsevier, vol. 220(19), pages 2427-2440.
    9. Paresh Halder & Hideki Takebe & Krisna Pawitan & Jun Fujita & Shuji Misumi & Tsumoru Shintake, 2020. "Turbine Characteristics of Wave Energy Conversion Device for Extraction Power Using Breaking Waves," Energies, MDPI, vol. 13(4), pages 1-17, February.
    10. Drignei, Dorin, 2011. "A general statistical model for computer experiments with time series output," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 460-467.
    11. Yunsong Han & Hong Yu & Cheng Sun, 2017. "Simulation-Based Multiobjective Optimization of Timber-Glass Residential Buildings in Severe Cold Regions," Sustainability, MDPI, vol. 9(12), pages 1-18, December.
    12. Nishi, Yasuyuki & Mori, Nozomi & Yamada, Naoki & Inagaki, Terumi, 2022. "Study on the design method for axial flow runner that combines design of experiments, response surface method, and optimization method to one-dimensional design method," Renewable Energy, Elsevier, vol. 185(C), pages 96-110.
    13. Jixiang Qing & Ivo Couckuyt & Tom Dhaene, 2023. "A robust multi-objective Bayesian optimization framework considering input uncertainty," Journal of Global Optimization, Springer, vol. 86(3), pages 693-711, July.
    14. Halder, Paresh & Samad, Abdus & Thévenin, Dominique, 2017. "Improved design of a Wells turbine for higher operating range," Renewable Energy, Elsevier, vol. 106(C), pages 122-134.
    15. Yuan, Jun & Ng, Szu Hui, 2013. "A sequential approach for stochastic computer model calibration and prediction," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 273-286.
    16. Edward Boone & Jan Hannig & Ryad Ghanam & Sujit Ghosh & Fabrizio Ruggeri & Serge Prudhomme, 2022. "Model Validation of a Single Degree-of-Freedom Oscillator: A Case Study," Stats, MDPI, vol. 5(4), pages 1-17, November.
    17. Abokersh, Mohamed Hany & Vallès, Manel & Cabeza, Luisa F. & Boer, Dieter, 2020. "A framework for the optimal integration of solar assisted district heating in different urban sized communities: A robust machine learning approach incorporating global sensitivity analysis," Applied Energy, Elsevier, vol. 267(C).
    18. Sergio Cabello, 2023. "Faster distance-based representative skyline and k-center along pareto front in the plane," Journal of Global Optimization, Springer, vol. 86(2), pages 441-466, June.
    19. Campbell, Katherine, 2006. "Statistical calibration of computer simulations," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1358-1363.
    20. Houssem R. E. H. Bouchekara & Yusuf A. Sha’aban & Mohammad S. Shahriar & Makbul A. M. Ramli & Abdullahi A. Mas’ud, 2023. "Wind Farm Layout Optimization/Expansion with Real Wind Turbines Using a Multi-Objective EA Based on an Enhanced Inverted Generational Distance Metric Combined with the Two-Archive Algorithm 2," Sustainability, MDPI, vol. 15(3), pages 1-32, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:175:y:2017:i:1:d:10.1007_s10957-017-1114-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.