IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01881379.html
   My bibliography  Save this paper

Portfolio implementation risk management using evolutionary multiobjective optimization

Author

Listed:
  • David Quintana

    (LCC - Departamento Lenguajes y Ciencias de la Computación - Universidad de Málaga [Málaga] = University of Málaga [Málaga])

  • Roman Denysiuk

    (Universidade do Minho = University of Minho [Braga])

  • Sandra García-Rodríguez

    (LADIS (CEA, LIST) - Laboratoire d'analyse des données et d'intelligence des systèmes (CEA, LIST) - DM2I (CEA, LIST) - Département Métrologie Instrumentation & Information (CEA, LIST) - LIST (CEA) - Laboratoire d'Intégration des Systèmes et des Technologies - DRT (CEA) - Direction de Recherche Technologique (CEA) - CEA - Commissariat à l'énergie atomique et aux énergies alternatives - Université Paris-Saclay)

  • Antonio Gaspar-Cunha

    (Universidade do Minho = University of Minho [Braga])

Abstract

Portfolio management based on mean-variance portfolio optimization is subject to different sources of uncertainty. In addition to those related to the quality of parameter estimates used in the optimization process, investors face a portfolio implementation risk. The potential temporary discrepancy between target and present portfolios, caused by trading strategies, may expose investors to undesired risks. This study proposes an evolutionary multiobjective optimization algorithm aiming at regions with solutions more tolerant to these deviations and, therefore, more reliable. The proposed approach incorporates a user's preference and seeks a fine-grained approximation of the most relevant efficient region. The computational experiments performed in this study are based on a cardinality-constrained problem with investment limits for eight broad-category indexes and 15 years of data. The obtained results show the ability of the proposed approach to address the robustness issue and to support decision making by providing a preferred part of the efficient set. The results reveal that the obtained solutions also exhibit a higher tolerance to prediction errors in asset returns and variance-covariance matrix.

Suggested Citation

  • David Quintana & Roman Denysiuk & Sandra García-Rodríguez & Antonio Gaspar-Cunha, 2017. "Portfolio implementation risk management using evolutionary multiobjective optimization," Post-Print hal-01881379, HAL.
  • Handle: RePEc:hal:journl:hal-01881379
    DOI: 10.3390/app7101079
    Note: View the original document on HAL open archive server: https://hal.science/hal-01881379v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-01881379v1/document
    Download Restriction: no

    File URL: https://libkey.io/10.3390/app7101079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Babaei, Sadra & Sepehri, Mohammad Mehdi & Babaei, Edris, 2015. "Multi-objective portfolio optimization considering the dependence structure of asset returns," European Journal of Operational Research, Elsevier, vol. 244(2), pages 525-539.
    2. Fliege, Jörg & Werner, Ralf, 2014. "Robust multiobjective optimization & applications in portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 422-433.
    3. Beume, Nicola & Naujoks, Boris & Emmerich, Michael, 2007. "SMS-EMOA: Multiobjective selection based on dominated hypervolume," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1653-1669, September.
    4. Kim, Woo Chang & Kim, Min Jeong & Kim, Jang Ho & Fabozzi, Frank J., 2014. "Robust portfolios that do not tilt factor exposure," European Journal of Operational Research, Elsevier, vol. 234(2), pages 411-421.
    5. Björn Fastrich & Peter Winker, 2012. "Robust portfolio optimization with a hybrid heuristic algorithm," Computational Management Science, Springer, vol. 9(1), pages 63-88, February.
    6. Kai Ye & Panos Parpas & Berç Rustem, 2012. "Robust portfolio optimization: a conic programming approach," Computational Optimization and Applications, Springer, vol. 52(2), pages 463-481, June.
    7. Wei Yue & Yuping Wang & Cai Dai, 2015. "An Evolutionary Algorithm for Multiobjective Fuzzy Portfolio Selection Models with Transaction Cost and Liquidity," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-15, August.
    8. Aida Toma & Samuela Leoni-Aubin, 2015. "Robust Portfolio Optimization Using Pseudodistances," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-26, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paolo Pagliuca & Stefano Nolfi, 2019. "Robust optimization through neuroevolution," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-27, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pätäri, Eero & Karell, Ville & Luukka, Pasi & Yeomans, Julian S, 2018. "Comparison of the multicriteria decision-making methods for equity portfolio selection: The U.S. evidence," European Journal of Operational Research, Elsevier, vol. 265(2), pages 655-672.
    2. Xidonas, Panos & Hassapis, Christis & Soulis, John & Samitas, Aristeidis, 2017. "Robust minimum variance portfolio optimization modelling under scenario uncertainty," Economic Modelling, Elsevier, vol. 64(C), pages 60-71.
    3. Xidonas, Panos & Mavrotas, George & Hassapis, Christis & Zopounidis, Constantin, 2017. "Robust multiobjective portfolio optimization: A minimax regret approach," European Journal of Operational Research, Elsevier, vol. 262(1), pages 299-305.
    4. Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2018. "Recent advancements in robust optimization for investment management," Annals of Operations Research, Springer, vol. 266(1), pages 183-198, July.
    5. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2022. "Robust portfolio selection problems: a comprehensive review," Operational Research, Springer, vol. 22(4), pages 3203-3264, September.
    6. Panos Xidonas & Ralph Steuer & Christis Hassapis, 2020. "Robust portfolio optimization: a categorized bibliographic review," Annals of Operations Research, Springer, vol. 292(1), pages 533-552, September.
    7. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2021. "Robust Portfolio Selection Problems: A Comprehensive Review," Papers 2103.13806, arXiv.org, revised Jan 2022.
    8. Antonios Georgantas & Michalis Doumpos & Constantin Zopounidis, 2024. "Robust optimization approaches for portfolio selection: a comparative analysis," Annals of Operations Research, Springer, vol. 339(3), pages 1205-1221, August.
    9. Liagkouras, Konstantinos & Metaxiotis, Konstantinos, 2021. "Improving multi-objective algorithms performance by emulating behaviors from the human social analogue in candidate solutions," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1019-1036.
    10. Gabriele Eichfelder & Corinna Krüger & Anita Schöbel, 2017. "Decision uncertainty in multiobjective optimization," Journal of Global Optimization, Springer, vol. 69(2), pages 485-510, October.
    11. Gong, Wenyin & Cai, Zhihua, 2009. "An improved multiobjective differential evolution based on Pareto-adaptive [epsilon]-dominance and orthogonal design," European Journal of Operational Research, Elsevier, vol. 198(2), pages 576-601, October.
    12. Igor Cialenco & Gabriela Kov'av{c}ov'a, 2024. "Vector-valued robust stochastic control," Papers 2407.00266, arXiv.org.
    13. Andrea Ponti & Antonio Candelieri & Ilaria Giordani & Francesco Archetti, 2023. "Intrusion Detection in Networks by Wasserstein Enabled Many-Objective Evolutionary Algorithms," Mathematics, MDPI, vol. 11(10), pages 1-14, May.
    14. Kang, Yan-li & Tian, Jing-Song & Chen, Chen & Zhao, Gui-Yu & Li, Yuan-fu & Wei, Yu, 2021. "Entropy based robust portfolio," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    15. Groetzner, Patrick & Werner, Ralf, 2022. "Multiobjective optimization under uncertainty: A multiobjective robust (relative) regret approach," European Journal of Operational Research, Elsevier, vol. 296(1), pages 101-115.
    16. Qi, Yue & Liao, Kezhi & Liu, Tongyang & Zhang, Yu, 2022. "Originating multiple-objective portfolio selection by counter-COVID measures and analytically instigating robust optimization by mean-parameterized nondominated paths," Operations Research Perspectives, Elsevier, vol. 9(C).
    17. Yunsong Han & Hong Yu & Cheng Sun, 2017. "Simulation-Based Multiobjective Optimization of Timber-Glass Residential Buildings in Severe Cold Regions," Sustainability, MDPI, vol. 9(12), pages 1-18, December.
    18. Yeudiel Lara Moreno & Carlos Ignacio Hernández Castellanos, 2024. "A Hierarchical Approach to a Tri-Objective Portfolio Optimization Problem Considering an ESG Index," Mathematics, MDPI, vol. 12(19), pages 1-16, October.
    19. Laumanns, Marco & Zenklusen, Rico, 2011. "Stochastic convergence of random search methods to fixed size Pareto front approximations," European Journal of Operational Research, Elsevier, vol. 213(2), pages 414-421, September.
    20. Ivo Couckuyt & Dirk Deschrijver & Tom Dhaene, 2014. "Fast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimization," Journal of Global Optimization, Springer, vol. 60(3), pages 575-594, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01881379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.