IDEAS home Printed from https://ideas.repec.org/a/spr/jbecon/v90y2020i9d10.1007_s11573-020-00971-5.html
   My bibliography  Save this article

Multi-objective hybrid flow shop scheduling with variable discrete production speed levels and time-of-use energy prices

Author

Listed:
  • Sven Schulz

    (TU Dresden)

  • Udo Buscher

    (TU Dresden)

  • Liji Shen

    (WHU-Otto Beisheim School of Management)

Abstract

Energy costs play an important role in industrial production and are closely related to environmental concerns. As sustainability aspects are coming into focus in recent years, energy-oriented objectives are increasingly being taken into account in scheduling. At the same time, requirements for punctual delivery become more and more important in times of just-in-time delivery and highly networked supply chains. In this paper, a hybrid flow shop scheduling problem with variable discrete production speed levels is considered with the aim of minimizing both energy costs and total tardiness. Although lower speeds can reduce energy consumption, they also increase processing times, which counteract the objective of punctual delivery. Two new model formulations additionally taking time-of-use energy prices into account are presented and compared. The influence of variable discrete production speed levels on energy costs, energy consumption and punctual delivery as well as the interdependencies between these objectives are analysed in a numerical case study.

Suggested Citation

  • Sven Schulz & Udo Buscher & Liji Shen, 2020. "Multi-objective hybrid flow shop scheduling with variable discrete production speed levels and time-of-use energy prices," Journal of Business Economics, Springer, vol. 90(9), pages 1315-1343, November.
  • Handle: RePEc:spr:jbecon:v:90:y:2020:i:9:d:10.1007_s11573-020-00971-5
    DOI: 10.1007/s11573-020-00971-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11573-020-00971-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11573-020-00971-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Beume, Nicola & Naujoks, Boris & Emmerich, Michael, 2007. "SMS-EMOA: Multiobjective selection based on dominated hypervolume," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1653-1669, September.
    2. Mansouri, S. Afshin & Aktas, Emel & Besikci, Umut, 2016. "Green scheduling of a two-machine flowshop: Trade-off between makespan and energy consumption," European Journal of Operational Research, Elsevier, vol. 248(3), pages 772-788.
    3. Sven Schulz, 2018. "A Multi-criteria MILP Formulation for Energy Aware Hybrid Flow Shop Scheduling," Operations Research Proceedings, in: Andreas Fink & Armin Fügenschuh & Martin Josef Geiger (ed.), Operations Research Proceedings 2016, pages 543-549, Springer.
    4. Artigues, Christian & Lopez, Pierre & Haït, Alain, 2013. "The energy scheduling problem: Industrial case-study and constraint propagation techniques," International Journal of Production Economics, Elsevier, vol. 143(1), pages 13-23.
    5. Saidur, R., 2009. "Energy consumption, energy savings, and emission analysis in Malaysian office buildings," Energy Policy, Elsevier, vol. 37(10), pages 4104-4113, October.
    6. Beşikci, Umut & Bilge, Ümit & Ulusoy, Gündüz, 2015. "Multi-mode resource constrained multi-project scheduling and resource portfolio problem," European Journal of Operational Research, Elsevier, vol. 240(1), pages 22-31.
    7. Biel, K. & Glock, C. H., 2016. "Systematic literature review of decision support models for energy-efficient production planning," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 83071, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    8. Zanoni, Simone & Bettoni, Laura & Glock, Christoph H., 2014. "Energy implications in a two-stage production system with controllable production rates," International Journal of Production Economics, Elsevier, vol. 149(C), pages 164-171.
    9. Gahm, Christian & Denz, Florian & Dirr, Martin & Tuma, Axel, 2016. "Energy-efficient scheduling in manufacturing companies: A review and research framework," European Journal of Operational Research, Elsevier, vol. 248(3), pages 744-757.
    10. Naber, Anulark & Kolisch, Rainer, 2014. "MIP models for resource-constrained project scheduling with flexible resource profiles," European Journal of Operational Research, Elsevier, vol. 239(2), pages 335-348.
    11. Abdelaziz, E.A. & Saidur, R. & Mekhilef, S., 2011. "A review on energy saving strategies in industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 150-168, January.
    12. Zanoni, S. & Bettoni, L. & Glock, C. H., 2014. "Energy Implications in a Two-Stage Production System with Controllable Production Rates," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 62117, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    13. Nilsson, K. & Söderström, M., 1993. "Industrial applications of production planning with optimal electricity demand," Applied Energy, Elsevier, vol. 46(2), pages 181-192.
    14. Deming Lei & Youlian Zheng & Xiuping Guo, 2017. "A shuffled frog-leaping algorithm for flexible job shop scheduling with the consideration of energy consumption," International Journal of Production Research, Taylor & Francis Journals, vol. 55(11), pages 3126-3140, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen, Liji & Dauzère-Pérès, Stéphane & Maecker, Söhnke, 2023. "Energy cost efficient scheduling in flexible job-shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 310(3), pages 992-1016.
    2. Shun Jia & Yang Yang & Shuyu Li & Shang Wang & Anbang Li & Wei Cai & Yang Liu & Jian Hao & Luoke Hu, 2024. "The Green Flexible Job-Shop Scheduling Problem Considering Cost, Carbon Emissions, and Customer Satisfaction under Time-of-Use Electricity Pricing," Sustainability, MDPI, vol. 16(6), pages 1-22, March.
    3. Neufeld, Janis S. & Schulz, Sven & Buscher, Udo, 2023. "A systematic review of multi-objective hybrid flow shop scheduling," European Journal of Operational Research, Elsevier, vol. 309(1), pages 1-23.
    4. Hajo Terbrack & Thorsten Claus & Frank Herrmann, 2021. "Energy-Oriented Production Planning in Industry: A Systematic Literature Review and Classification Scheme," Sustainability, MDPI, vol. 13(23), pages 1-32, December.
    5. Anderson Lucas Carneiro de Lima da Silva & Ana Paula Cabral Seixas Costa & Adiel Teixeira de Almeida, 2022. "Exploring cognitive aspects of FITradeoff method using neuroscience tools," Annals of Operations Research, Springer, vol. 312(2), pages 1147-1169, May.
    6. Markus Hilbert & Andreas Dellnitz & Andreas Kleine, 2023. "Production planning under RTP, TOU and PPA considering a redox flow battery storage system," Annals of Operations Research, Springer, vol. 328(2), pages 1409-1436, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Ying & Dong, Haibo & Lohse, Niels & Petrovic, Sanja, 2016. "A multi-objective genetic algorithm for optimisation of energy consumption and shop floor production performance," International Journal of Production Economics, Elsevier, vol. 179(C), pages 259-272.
    2. Gahm, Christian & Denz, Florian & Dirr, Martin & Tuma, Axel, 2016. "Energy-efficient scheduling in manufacturing companies: A review and research framework," European Journal of Operational Research, Elsevier, vol. 248(3), pages 744-757.
    3. Hajo Terbrack & Thorsten Claus & Frank Herrmann, 2021. "Energy-Oriented Production Planning in Industry: A Systematic Literature Review and Classification Scheme," Sustainability, MDPI, vol. 13(23), pages 1-32, December.
    4. Wichmann, Matthias Gerhard & Johannes, Christoph & Spengler, Thomas Stefan, 2019. "Energy-oriented Lot-Sizing and Scheduling considering energy storages," International Journal of Production Economics, Elsevier, vol. 216(C), pages 204-214.
    5. Matthias Gerhard Wichmann & Christoph Johannes & Thomas Stefan Spengler, 2019. "An extension of the general lot-sizing and scheduling problem (GLSP) with time-dependent energy prices," Journal of Business Economics, Springer, vol. 89(5), pages 481-514, July.
    6. Abbas Hamze & Yassine Ouazene & Nazir Chebbo & Imane Maatouk, 2019. "Multisources of Energy Contracting Strategy with an Ecofriendly Factor and Demand Uncertainties," Energies, MDPI, vol. 12(20), pages 1-24, October.
    7. Beck, Fabian G. & Biel, Konstantin & Glock, Christoph H., 2019. "Integration of energy aspects into the economic lot scheduling problem," International Journal of Production Economics, Elsevier, vol. 209(C), pages 399-410.
    8. Konstantin Biel & Christoph H. Glock, 2017. "Prerequisites of efficient decentralized waste heat recovery and energy storage in production planning," Journal of Business Economics, Springer, vol. 87(1), pages 41-72, January.
    9. Ghorbanzadeh, Masoumeh & Ranjbar, Mohammad, 2023. "Energy-aware production scheduling in the flow shop environment under sequence-dependent setup times, group scheduling and renewable energy constraints," European Journal of Operational Research, Elsevier, vol. 307(2), pages 519-537.
    10. Shen, Liji & Dauzère-Pérès, Stéphane & Maecker, Söhnke, 2023. "Energy cost efficient scheduling in flexible job-shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 310(3), pages 992-1016.
    11. Alvarez-Meaza, Izaskun & Zarrabeitia-Bilbao, Enara & Rio-Belver, Rosa-María & Garechana-Anacabe, Gaizka, 2021. "Green scheduling to achieve green manufacturing: Pursuing a research agenda by mapping science," Technology in Society, Elsevier, vol. 67(C).
    12. Heydar, Mojtaba & Mardaneh, Elham & Loxton, Ryan, 2022. "Approximate dynamic programming for an energy-efficient parallel machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 302(1), pages 363-380.
    13. João M. R. C. Fernandes & Seyed Mahdi Homayouni & Dalila B. M. M. Fontes, 2022. "Energy-Efficient Scheduling in Job Shop Manufacturing Systems: A Literature Review," Sustainability, MDPI, vol. 14(10), pages 1-34, May.
    14. Trevino-Martinez, Samuel & Sawhney, Rapinder & Shylo, Oleg, 2022. "Energy-carbon footprint optimization in sequence-dependent production scheduling," Applied Energy, Elsevier, vol. 315(C).
    15. Rapine, Christophe & Penz, Bernard & Gicquel, Céline & Akbalik, Ayse, 2018. "Capacity acquisition for the single-item lot sizing problem under energy constraints," Omega, Elsevier, vol. 81(C), pages 112-122.
    16. Desta, Alemayehu Addisu & Badis, Hakim & George, Laurent, 2018. "Demand response scheduling in industrial asynchronous production lines constrained by available power and production rate," Applied Energy, Elsevier, vol. 230(C), pages 1414-1424.
    17. Kim, Hyunjung & Kim, Eungab, 2022. "A hybrid manufacturing system with demand for intermediate goods and controllable make-to-stock production rate," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1244-1257.
    18. Rapine, Christophe & Goisque, Guillaume & Akbalik, Ayse, 2018. "Energy-aware lot sizing problem: Complexity analysis and exact algorithms," International Journal of Production Economics, Elsevier, vol. 203(C), pages 254-263.
    19. Garwood, Tom Lloyd & Hughes, Ben Richard & Oates, Michael R. & O’Connor, Dominic & Hughes, Ruby, 2018. "A review of energy simulation tools for the manufacturing sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 895-911.
    20. Andreas Dellnitz & Damian Braschczok & Jonas Ostmeyer & Markus Hilbert & Andreas Kleine, 2020. "Energy costs vs. carbon dioxide emissions in short-term production planning," Journal of Business Economics, Springer, vol. 90(9), pages 1383-1407, November.

    More about this item

    Keywords

    Energy efficient scheduling; Hybrid flow shop; Mixed integer programming; Sustainability; Multi-objective optimization;
    All these keywords.

    JEL classification:

    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jbecon:v:90:y:2020:i:9:d:10.1007_s11573-020-00971-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.