IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i9p1492-d917632.html
   My bibliography  Save this article

An Improved Multi-Objective Optimization Decision Method Using NSGA-III for a Bivariate Precision Fertilizer Applicator

Author

Listed:
  • Yugong Dang

    (School of Vehicle and Traffic Engineering, Henan University of Science and Technology, Luoyang 471000, China)

  • Hongen Ma

    (School of Vehicle and Traffic Engineering, Henan University of Science and Technology, Luoyang 471000, China)

  • Jun Wang

    (School of Electrical Engineering, Henan University of Science and Technology, Luoyang 471000, China)

  • Zhigang Zhou

    (School of Vehicle and Traffic Engineering, Henan University of Science and Technology, Luoyang 471000, China)

  • Zhidong Xu

    (China Petroleum First Construction Corporation Ltd., Luoyang 471023, China)

Abstract

In order to boost the performance of a bivariable granular fertilizer applicator and simplify the control methodology of fertilization rate regulation, this paper proposed a fertilization decision method to obtain the optimal combination of rotational speed and opening length by selecting the accuracy, uniformity, adjustment time, and breakage rate as the optimization objectives. We processed the outlier data collected using the indoor bench test, segmented the data with the fertilization growth rate as the index, and proved the rationality of the data segmentation by an independent sample t -test. SVM, BPNN, ELM, and RVM were used to train the two data sections to create the fertilization rate prediction model, and the models with the highest accuracy in the two data sections were selected for the assembly of the final prediction model used to describe the fertilization process of the bivariate fertilizer applicator. Moreover, the fertilization performance problem model was established with the objectives of accuracy, uniformity, adjustment time, and breakage rate and was solved using the NSGA-III algorithm to gain an optimal fertilization decision. Compared with GA and MOEA-D-DE methods, the results show that, using the new method, the average relative error declines from 8.64% and 6.05% to 3.09%, and the average coefficient of variation reduces from 6.67% and 6.81% to 6.41%, respectively. In addition, the adjustment time lowers from 2.01 s and 1.33 s to 0.78 s, and the average breakage rate drops from 1.084% and 0.845% to 0.803%, respectively. It is indicated that the presented method offers the most notable improvements in accuracy and adjustment time, while the advancements in regard to uniformity and breakage rate is slight, but both are within a reasonable range.

Suggested Citation

  • Yugong Dang & Hongen Ma & Jun Wang & Zhigang Zhou & Zhidong Xu, 2022. "An Improved Multi-Objective Optimization Decision Method Using NSGA-III for a Bivariate Precision Fertilizer Applicator," Agriculture, MDPI, vol. 12(9), pages 1-23, September.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:9:p:1492-:d:917632
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/9/1492/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/9/1492/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Beume, Nicola & Naujoks, Boris & Emmerich, Michael, 2007. "SMS-EMOA: Multiobjective selection based on dominated hypervolume," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1653-1669, September.
    2. Manfredo Guilizzoni & Paloma Maldonado Eizaguirre, 2022. "Trend Lines and Japanese Candlesticks Applied to the Forecasting of Wind Speed Data Series," Forecasting, MDPI, vol. 4(1), pages 1-17, January.
    3. Alamgir Khalil & Salahuddin & Wali Khan Mashwani & Muhammad Shafiq & Saima Hassan & Wiyada Kumam, 2021. "New advanced outliers detection tests," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 50(7), pages 1640-1655, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gniewko Niedbała & Sebastian Kujawa, 2023. "Digital Innovations in Agriculture," Agriculture, MDPI, vol. 13(9), pages 1-10, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liagkouras, Konstantinos & Metaxiotis, Konstantinos, 2021. "Improving multi-objective algorithms performance by emulating behaviors from the human social analogue in candidate solutions," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1019-1036.
    2. Gong, Wenyin & Cai, Zhihua, 2009. "An improved multiobjective differential evolution based on Pareto-adaptive [epsilon]-dominance and orthogonal design," European Journal of Operational Research, Elsevier, vol. 198(2), pages 576-601, October.
    3. Andrea Ponti & Antonio Candelieri & Ilaria Giordani & Francesco Archetti, 2023. "Intrusion Detection in Networks by Wasserstein Enabled Many-Objective Evolutionary Algorithms," Mathematics, MDPI, vol. 11(10), pages 1-14, May.
    4. David Quintana & Roman Denysiuk & Sandra García-Rodríguez & Antonio Gaspar-Cunha, 2017. "Portfolio implementation risk management using evolutionary multiobjective optimization," Post-Print hal-01881379, HAL.
    5. Yunsong Han & Hong Yu & Cheng Sun, 2017. "Simulation-Based Multiobjective Optimization of Timber-Glass Residential Buildings in Severe Cold Regions," Sustainability, MDPI, vol. 9(12), pages 1-18, December.
    6. Yeudiel Lara Moreno & Carlos Ignacio Hernández Castellanos, 2024. "A Hierarchical Approach to a Tri-Objective Portfolio Optimization Problem Considering an ESG Index," Mathematics, MDPI, vol. 12(19), pages 1-16, October.
    7. Laumanns, Marco & Zenklusen, Rico, 2011. "Stochastic convergence of random search methods to fixed size Pareto front approximations," European Journal of Operational Research, Elsevier, vol. 213(2), pages 414-421, September.
    8. Ivo Couckuyt & Dirk Deschrijver & Tom Dhaene, 2014. "Fast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimization," Journal of Global Optimization, Springer, vol. 60(3), pages 575-594, November.
    9. Derbel, Bilel & Humeau, Jérémie & Liefooghe, Arnaud & Verel, Sébastien, 2014. "Distributed localized bi-objective search," European Journal of Operational Research, Elsevier, vol. 239(3), pages 731-743.
    10. Hang Xu, 2024. "A Dynamic Tasking-Based Evolutionary Algorithm for Bi-Objective Feature Selection," Mathematics, MDPI, vol. 12(10), pages 1-23, May.
    11. Sergio Cabello, 2023. "Faster distance-based representative skyline and k-center along pareto front in the plane," Journal of Global Optimization, Springer, vol. 86(2), pages 441-466, June.
    12. Sven Schulz & Udo Buscher & Liji Shen, 2020. "Multi-objective hybrid flow shop scheduling with variable discrete production speed levels and time-of-use energy prices," Journal of Business Economics, Springer, vol. 90(9), pages 1315-1343, November.
    13. Lourdes Uribe & Johan M Bogoya & Andrés Vargas & Adriana Lara & Günter Rudolph & Oliver Schütze, 2020. "A Set Based Newton Method for the Averaged Hausdorff Distance for Multi-Objective Reference Set Problems," Mathematics, MDPI, vol. 8(10), pages 1-29, October.
    14. Houssem R. E. H. Bouchekara & Yusuf A. Sha’aban & Mohammad S. Shahriar & Makbul A. M. Ramli & Abdullahi A. Mas’ud, 2023. "Wind Farm Layout Optimization/Expansion with Real Wind Turbines Using a Multi-Objective EA Based on an Enhanced Inverted Generational Distance Metric Combined with the Two-Archive Algorithm 2," Sustainability, MDPI, vol. 15(3), pages 1-32, January.
    15. Álvaro Rubio-Largo & Miguel Vega-Rodríguez & David González-Álvarez, 2015. "Multiobjective swarm intelligence for the traffic grooming problem," Computational Optimization and Applications, Springer, vol. 60(2), pages 479-511, March.
    16. Taimoor Akhtar & Christine Shoemaker, 2016. "Multi objective optimization of computationally expensive multi-modal functions with RBF surrogates and multi-rule selection," Journal of Global Optimization, Springer, vol. 64(1), pages 17-32, January.
    17. Prashant Singh & Ivo Couckuyt & Khairy Elsayed & Dirk Deschrijver & Tom Dhaene, 2017. "Multi-objective Geometry Optimization of a Gas Cyclone Using Triple-Fidelity Co-Kriging Surrogate Models," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 172-193, October.
    18. Braun, Marlon & Shukla, Pradyumn, 2024. "On cone-based decompositions of proper Pareto-optimality in multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 317(2), pages 592-602.
    19. Jesús Martínez-Frutos & David Herrero-Pérez, 2016. "Kriging-based infill sampling criterion for constraint handling in multi-objective optimization," Journal of Global Optimization, Springer, vol. 64(1), pages 97-115, January.
    20. Juergen Branke & Wen Zhang, 2019. "Identifying efficient solutions via simulation: myopic multi-objective budget allocation for the bi-objective case," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 831-865, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:9:p:1492-:d:917632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.