IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v59y2014i1p201-218.html
   My bibliography  Save this article

On error bounds and Newton-type methods for generalized Nash equilibrium problems

Author

Listed:
  • Alexey Izmailov
  • Mikhail Solodov

Abstract

Error bounds (estimates for the distance to the solution set of a given problem) are key to analyzing convergence rates of computational methods for solving the problem in question, or sometimes even to justifying convergence itself. That said, for the generalized Nash equilibrium problems (GNEP), the theory of error bounds had not been developed in depth comparable to the fields of optimization and variational problems. In this paper, we provide a systematic approach which should be useful for verifying error bounds for both specific instances of GNEPs and for classes of GNEPs. These error bounds for GNEPs are based on more general results for constraints that involve complementarity relations and cover those (few) GNEP error bounds that existed previously, and go beyond. In addition, they readily imply a Lipschitzian stability result for solutions of GNEPs, a subject where again very little had been known. As a specific application of error bounds, we discuss Newtonian methods for solving GNEPs. While we do not propose any significantly new methods in this respect, some new insights into applicability to GNEPs of various approaches and into their convergence properties are presented. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Alexey Izmailov & Mikhail Solodov, 2014. "On error bounds and Newton-type methods for generalized Nash equilibrium problems," Computational Optimization and Applications, Springer, vol. 59(1), pages 201-218, October.
  • Handle: RePEc:spr:coopap:v:59:y:2014:i:1:p:201-218
    DOI: 10.1007/s10589-013-9595-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-013-9595-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-013-9595-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ankur A. Kulkarni & Uday V. Shanbhag, 2012. "Revisiting Generalized Nash Games and Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 175-186, July.
    2. Koichi Nabetani & Paul Tseng & Masao Fukushima, 2011. "Parametrized variational inequality approaches to generalized Nash equilibrium problems with shared constraints," Computational Optimization and Applications, Springer, vol. 48(3), pages 423-452, April.
    3. Jong-Shi Pang & Masao Fukushima, 2009. "Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games," Computational Management Science, Springer, vol. 6(3), pages 373-375, August.
    4. K. Kubota & M. Fukushima, 2010. "Gap Function Approach to the Generalized Nash Equilibrium Problem," Journal of Optimization Theory and Applications, Springer, vol. 144(3), pages 511-531, March.
    5. Francisco Facchinei & Christian Kanzow, 2010. "Generalized Nash Equilibrium Problems," Annals of Operations Research, Springer, vol. 175(1), pages 177-211, March.
    6. Harker, Patrick T., 1991. "Generalized Nash games and quasi-variational inequalities," European Journal of Operational Research, Elsevier, vol. 54(1), pages 81-94, September.
    7. Jong-Shi Pang & Masao Fukushima, 2005. "Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games," Computational Management Science, Springer, vol. 2(1), pages 21-56, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Axel Dreves, 2017. "Computing all solutions of linear generalized Nash equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(2), pages 207-221, April.
    2. Andreas Fischer, 2015. "Comments on: Critical Lagrange multipliers: what we currently know about them, how they spoil our lives, and what we can do about it," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 27-31, April.
    3. Giancarlo Bigi & Mauro Passacantando, 2016. "Gap functions for quasi-equilibria," Journal of Global Optimization, Springer, vol. 66(4), pages 791-810, December.
    4. María de los Ángeles Martínez & Damián Fernández, 2019. "On the Local and Superlinear Convergence of a Secant Modified Linear-Programming-Newton Method," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 993-1010, March.
    5. Lu-Ping Liu & Wen-Sheng Jia, 2021. "An Intelligent Algorithm for Solving the Efficient Nash Equilibrium of a Single-Leader Multi-Follower Game," Mathematics, MDPI, vol. 9(5), pages 1-14, February.
    6. Axel Dreves & Simone Sagratella, 2020. "Nonsingularity and Stationarity Results for Quasi-Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 711-743, June.
    7. Leonardo Galli & Christian Kanzow & Marco Sciandrone, 2018. "A nonmonotone trust-region method for generalized Nash equilibrium and related problems with strong convergence properties," Computational Optimization and Applications, Springer, vol. 69(3), pages 629-652, April.
    8. Andreas Fischer & Markus Herrich & Alexey Izmailov & Mikhail Solodov, 2016. "Convergence conditions for Newton-type methods applied to complementarity systems with nonisolated solutions," Computational Optimization and Applications, Springer, vol. 63(2), pages 425-459, March.
    9. Simone Sagratella, 2017. "Algorithms for generalized potential games with mixed-integer variables," Computational Optimization and Applications, Springer, vol. 68(3), pages 689-717, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Deren & Zhang, Hongchao & Qian, Gang & Xu, Lingling, 2012. "An improved two-step method for solving generalized Nash equilibrium problems," European Journal of Operational Research, Elsevier, vol. 216(3), pages 613-623.
    2. Francisco Facchinei & Jong-Shi Pang & Gesualdo Scutari, 2014. "Non-cooperative games with minmax objectives," Computational Optimization and Applications, Springer, vol. 59(1), pages 85-112, October.
    3. Migot, Tangi & Cojocaru, Monica-G., 2020. "A parametrized variational inequality approach to track the solution set of a generalized nash equilibrium problem," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1136-1147.
    4. Axel Dreves, 2016. "Improved error bound and a hybrid method for generalized Nash equilibrium problems," Computational Optimization and Applications, Springer, vol. 65(2), pages 431-448, November.
    5. Axel Dreves & Francisco Facchinei & Andreas Fischer & Markus Herrich, 2014. "A new error bound result for Generalized Nash Equilibrium Problems and its algorithmic application," Computational Optimization and Applications, Springer, vol. 59(1), pages 63-84, October.
    6. Shipra Singh & Aviv Gibali & Simeon Reich, 2021. "Multi-Time Generalized Nash Equilibria with Dynamic Flow Applications," Mathematics, MDPI, vol. 9(14), pages 1-23, July.
    7. Giancarlo Bigi & Mauro Passacantando, 2016. "Gap functions for quasi-equilibria," Journal of Global Optimization, Springer, vol. 66(4), pages 791-810, December.
    8. Jiawang Nie & Xindong Tang & Lingling Xu, 2021. "The Gauss–Seidel method for generalized Nash equilibrium problems of polynomials," Computational Optimization and Applications, Springer, vol. 78(2), pages 529-557, March.
    9. Axel Dreves, 2014. "Finding all solutions of affine generalized Nash equilibrium problems with one-dimensional strategy sets," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 80(2), pages 139-159, October.
    10. Axel Dreves & Anna Heusinger & Christian Kanzow & Masao Fukushima, 2013. "A globalized Newton method for the computation of normalized Nash equilibria," Journal of Global Optimization, Springer, vol. 56(2), pages 327-340, June.
    11. Jean Strodiot & Thi Nguyen & Van Nguyen, 2013. "A new class of hybrid extragradient algorithms for solving quasi-equilibrium problems," Journal of Global Optimization, Springer, vol. 56(2), pages 373-397, June.
    12. Giorgia Oggioni & Yves Smeers & Elisabetta Allevi & Siegfried Schaible, 2012. "A Generalized Nash Equilibrium Model of Market Coupling in the European Power System," Networks and Spatial Economics, Springer, vol. 12(4), pages 503-560, December.
    13. Nadja Harms & Tim Hoheisel & Christian Kanzow, 2015. "On a Smooth Dual Gap Function for a Class of Player Convex Generalized Nash Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 659-685, August.
    14. Simone Sagratella, 2017. "Algorithms for generalized potential games with mixed-integer variables," Computational Optimization and Applications, Springer, vol. 68(3), pages 689-717, December.
    15. Dane A. Schiro & Benjamin F. Hobbs & Jong-Shi Pang, 2016. "Perfectly competitive capacity expansion games with risk-averse participants," Computational Optimization and Applications, Springer, vol. 65(2), pages 511-539, November.
    16. Simone Sagratella, 2017. "Computing equilibria of Cournot oligopoly models with mixed-integer quantities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(3), pages 549-565, December.
    17. Axel Dreves, 2019. "An algorithm for equilibrium selection in generalized Nash equilibrium problems," Computational Optimization and Applications, Springer, vol. 73(3), pages 821-837, July.
    18. Axel Dreves, 2018. "How to Select a Solution in Generalized Nash Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 178(3), pages 973-997, September.
    19. K. Kubota & M. Fukushima, 2010. "Gap Function Approach to the Generalized Nash Equilibrium Problem," Journal of Optimization Theory and Applications, Springer, vol. 144(3), pages 511-531, March.
    20. L. F. Bueno & G. Haeser & F. Lara & F. N. Rojas, 2020. "An Augmented Lagrangian method for quasi-equilibrium problems," Computational Optimization and Applications, Springer, vol. 76(3), pages 737-766, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:59:y:2014:i:1:p:201-218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.