IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v154y2012i1d10.1007_s10957-011-9981-5.html
   My bibliography  Save this article

Revisiting Generalized Nash Games and Variational Inequalities

Author

Listed:
  • Ankur A. Kulkarni

    (University of Illinois at Urbana-Champaign)

  • Uday V. Shanbhag

    (University of Illinois at Urbana-Champaign)

Abstract

Generalized Nash games with shared constraints represent an extension of Nash games in which strategy sets are coupled across players through a shared or common constraint. The equilibrium conditions of such a game can be compactly stated as a quasi-variational inequality (QVI), an extension of the variational inequality (VI). In (Eur. J. Oper. Res. 54(1):81–94, 1991), Harker proved that for any QVI, under certain conditions, a solution to an appropriately defined VI solves the QVI. This is a particularly important result, given that VIs are generally far more tractable than QVIs. However Facchinei et al. (Oper. Res. Lett. 35(2):159–164, 2007) suggested that the hypotheses of this result are difficult to satisfy in practice for QVIs arising from generalized Nash games with shared constraints. We investigate the applicability of Harker’s result for these games with the aim of formally establishing its reach. Specifically, we show that if Harker’s result is applied in a natural manner, its hypotheses are impossible to satisfy in most settings, thereby supporting the observations of Facchinei et al. But we also show that an indirect application of the result extends the realm of applicability of Harker’s result to all shared-constraint games. In particular, this avenue allows us to recover as a special case of Harker’s result, a result provided by Facchinei et al. (Oper. Res. Lett. 35(2):159–164, 2007), in which it is shown that a suitably defined VI provides a solution to the QVI of a shared-constraint game.

Suggested Citation

  • Ankur A. Kulkarni & Uday V. Shanbhag, 2012. "Revisiting Generalized Nash Games and Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 175-186, July.
  • Handle: RePEc:spr:joptap:v:154:y:2012:i:1:d:10.1007_s10957-011-9981-5
    DOI: 10.1007/s10957-011-9981-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-011-9981-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-011-9981-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Chan & J. S. Pang, 1982. "The Generalized Quasi-Variational Inequality Problem," Mathematics of Operations Research, INFORMS, vol. 7(2), pages 211-222, May.
    2. Harker, Patrick T., 1991. "Generalized Nash games and quasi-variational inequalities," European Journal of Operational Research, Elsevier, vol. 54(1), pages 81-94, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mathew P. Abraham & Ankur A. Kulkarni, 2018. "An Approach Based on Generalized Nash Games and Shared Constraints for Discrete Time Dynamic Games," Dynamic Games and Applications, Springer, vol. 8(4), pages 641-670, December.
    2. Dane A. Schiro & Benjamin F. Hobbs & Jong-Shi Pang, 2016. "Perfectly competitive capacity expansion games with risk-averse participants," Computational Optimization and Applications, Springer, vol. 65(2), pages 511-539, November.
    3. Francisco Facchinei & Jong-Shi Pang & Gesualdo Scutari, 2014. "Non-cooperative games with minmax objectives," Computational Optimization and Applications, Springer, vol. 59(1), pages 85-112, October.
    4. Alexey Izmailov & Mikhail Solodov, 2014. "On error bounds and Newton-type methods for generalized Nash equilibrium problems," Computational Optimization and Applications, Springer, vol. 59(1), pages 201-218, October.
    5. Pedro Borges & Claudia Sagastizábal & Mikhail Solodov, 2021. "Decomposition Algorithms for Some Deterministic and Two-Stage Stochastic Single-Leader Multi-Follower Games," Computational Optimization and Applications, Springer, vol. 78(3), pages 675-704, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacqueline Boucher & Yves Smeers, 2001. "Alternative Models of Restructured Electricity Systems, Part 1: No Market Power," Operations Research, INFORMS, vol. 49(6), pages 821-838, December.
    2. Francisco Facchinei & Christian Kanzow, 2010. "Generalized Nash Equilibrium Problems," Annals of Operations Research, Springer, vol. 175(1), pages 177-211, March.
    3. Giancarlo Bigi & Mauro Passacantando, 2016. "Gap functions for quasi-equilibria," Journal of Global Optimization, Springer, vol. 66(4), pages 791-810, December.
    4. Zhou, Jing & Lam, William H.K. & Heydecker, Benjamin G., 2005. "The generalized Nash equilibrium model for oligopolistic transit market with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 39(6), pages 519-544, July.
    5. Laura Scrimali, 2012. "Infinite Dimensional Duality Theory Applied to Investment Strategies in Environmental Policy," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 258-277, July.
    6. L. F. Bueno & G. Haeser & F. Lara & F. N. Rojas, 2020. "An Augmented Lagrangian method for quasi-equilibrium problems," Computational Optimization and Applications, Springer, vol. 76(3), pages 737-766, July.
    7. Igor Konnov, 2021. "Variational Inequality Type Formulations of General Market Equilibrium Problems with Local Information," Journal of Optimization Theory and Applications, Springer, vol. 188(2), pages 332-355, February.
    8. Francisco Facchinei & Christian Kanzow & Sebastian Karl & Simone Sagratella, 2015. "The semismooth Newton method for the solution of quasi-variational inequalities," Computational Optimization and Applications, Springer, vol. 62(1), pages 85-109, September.
    9. Axel Dreves & Christian Kanzow, 2011. "Nonsmooth optimization reformulations characterizing all solutions of jointly convex generalized Nash equilibrium problems," Computational Optimization and Applications, Springer, vol. 50(1), pages 23-48, September.
    10. Flam, Sjur & Ruszczynski, A., 2006. "Computing Normalized Equilibria in Convex-Concave Games," Working Papers 2006:9, Lund University, Department of Economics.
    11. Monica Milasi, 2014. "Existence theorem for a class of generalized quasi-variational inequalities," Journal of Global Optimization, Springer, vol. 60(4), pages 679-688, December.
    12. Giorgia Oggioni & Yves Smeers & Elisabetta Allevi & Siegfried Schaible, 2012. "A Generalized Nash Equilibrium Model of Market Coupling in the European Power System," Networks and Spatial Economics, Springer, vol. 12(4), pages 503-560, December.
    13. Tom Brijs & Daniel Huppmann & Sauleh Siddiqui & Ronnie Belmans, 2016. "Auction-Based Allocation of Shared Electricity Storage Resources through Physical Storage Rights," Discussion Papers of DIW Berlin 1566, DIW Berlin, German Institute for Economic Research.
    14. Nadja Harms & Tim Hoheisel & Christian Kanzow, 2015. "On a Smooth Dual Gap Function for a Class of Player Convex Generalized Nash Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 659-685, August.
    15. Andreas Ehrenmann & Karsten Neuhoff, 2009. "A Comparison of Electricity Market Designs in Networks," Operations Research, INFORMS, vol. 57(2), pages 274-286, April.
    16. Letícia Becher & Damián Fernández & Alberto Ramos, 2023. "A trust-region LP-Newton method for constrained nonsmooth equations under Hölder metric subregularity," Computational Optimization and Applications, Springer, vol. 86(2), pages 711-743, November.
    17. Tian, Guoqiang, 1991. "Generalized quasi-variational-like inequality problem," MPRA Paper 41219, University Library of Munich, Germany, revised 26 May 1992.
    18. Jianzhong Zhang & Biao Qu & Naihua Xiu, 2010. "Some projection-like methods for the generalized Nash equilibria," Computational Optimization and Applications, Springer, vol. 45(1), pages 89-109, January.
    19. Birbil, S.I. & Fang, S-C. & Han, J., 2002. "Entropic Regularization Approach for Mathematical Programs with Equilibrium Constraints," ERIM Report Series Research in Management ERS-2002-71-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    20. Alexey Izmailov & Mikhail Solodov, 2014. "On error bounds and Newton-type methods for generalized Nash equilibrium problems," Computational Optimization and Applications, Springer, vol. 59(1), pages 201-218, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:154:y:2012:i:1:d:10.1007_s10957-011-9981-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.