IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v288y2021i2p523-538.html
   My bibliography  Save this article

Equilibrium strategies for multiple interdictors on a common network

Author

Listed:
  • Sreekumaran, Harikrishnan
  • Hota, Ashish R.
  • Liu, Andrew L.
  • Uhan, Nelson A.
  • Sundaram, Shreyas

Abstract

In this work, we introduce multi-interdictor games, which model interactions among multiple interdictors with differing objectives operating on a common network. As a starting point, we focus on shortest path multi-interdictor (SPMI) games, where multiple interdictors try to increase the shortest path lengths of their own adversaries attempting to traverse a common network. We first establish results regarding the existence of equilibria for SPMI games under both discrete and continuous interdiction strategies. To compute such an equilibrium, we present a reformulation of the SPMI game, which leads to a generalized Nash equilibrium problem (GNEP) with non-shared constraints. While such a problem is computationally challenging in general, we show that under continuous interdiction actions, an SPMI game can be formulated as a linear complementarity problem and solved by Lemke’s algorithm. In addition, we present decentralized heuristic algorithms based on best response dynamics for games under both continuous and discrete interdiction strategies. Finally, we establish theoretical lower bounds on the worst-case efficiency loss of equilibria in SPMI games, with such loss caused by the lack of coordination among noncooperative interdictors, and use the decentralized algorithms to numerically study the average-case efficiency loss.

Suggested Citation

  • Sreekumaran, Harikrishnan & Hota, Ashish R. & Liu, Andrew L. & Uhan, Nelson A. & Sundaram, Shreyas, 2021. "Equilibrium strategies for multiple interdictors on a common network," European Journal of Operational Research, Elsevier, vol. 288(2), pages 523-538.
  • Handle: RePEc:eee:ejores:v:288:y:2021:i:2:p:523-538
    DOI: 10.1016/j.ejor.2020.06.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720305415
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.06.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Dorsch & H. T. Jongen & V. Shikhman, 2013. "On Intrinsic Complexity of Nash Equilibrium Problems and Bilevel Optimization," Journal of Optimization Theory and Applications, Springer, vol. 159(3), pages 606-634, December.
    2. Masao Fukushima, 2011. "Restricted generalized Nash equilibria and controlled penalty algorithm," Computational Management Science, Springer, vol. 8(3), pages 201-218, August.
    3. E. Chisonge Mofya & J. Cole Smith, 2006. "Exact and heuristic algorithms for solving the generalized minimum filter placement problem," Journal of Combinatorial Optimization, Springer, vol. 12(3), pages 231-256, November.
    4. Jianzhong Zhang & Biao Qu & Naihua Xiu, 2010. "Some projection-like methods for the generalized Nash equilibria," Computational Optimization and Applications, Springer, vol. 45(1), pages 89-109, January.
    5. Axel Dreves & Anna Heusinger & Christian Kanzow & Masao Fukushima, 2013. "A globalized Newton method for the computation of normalized Nash equilibria," Journal of Global Optimization, Springer, vol. 56(2), pages 327-340, June.
    6. Scaparra, Maria P. & Church, Richard L., 2008. "An exact solution approach for the interdiction median problem with fortification," European Journal of Operational Research, Elsevier, vol. 189(1), pages 76-92, August.
    7. Gerald G. Brown & W. Matthew Carlyle & Robert C. Harney & Eric M. Skroch & R. Kevin Wood, 2009. "Interdicting a Nuclear-Weapons Project," Operations Research, INFORMS, vol. 57(4), pages 866-877, August.
    8. P. M. Ghare & D. C. Montgomery & W. C. Turner, 1971. "Optimal interdiction policy for a flow network," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 18(1), pages 37-45, March.
    9. J. Cole Smith & Churlzu Lim, 2008. "Algorithms for Network Interdiction and Fortification Games," Springer Optimization and Its Applications, in: Altannar Chinchuluun & Panos M. Pardalos & Athanasios Migdalas & Leonidas Pitsoulis (ed.), Pareto Optimality, Game Theory And Equilibria, pages 609-644, Springer.
    10. Harker, Patrick T., 1991. "Generalized Nash games and quasi-variational inequalities," European Journal of Operational Research, Elsevier, vol. 54(1), pages 81-94, September.
    11. O'Hanley, Jesse R. & Church, Richard L., 2011. "Designing robust coverage networks to hedge against worst-case facility losses," European Journal of Operational Research, Elsevier, vol. 209(1), pages 23-36, February.
    12. Alan Washburn & Kevin Wood, 1995. "Two-Person Zero-Sum Games for Network Interdiction," Operations Research, INFORMS, vol. 43(2), pages 243-251, April.
    13. Francisco Facchinei & Veronica Piccialli & Marco Sciandrone, 2011. "Decomposition algorithms for generalized potential games," Computational Optimization and Applications, Springer, vol. 50(2), pages 237-262, October.
    14. C. E. Lemke, 1965. "Bimatrix Equilibrium Points and Mathematical Programming," Management Science, INFORMS, vol. 11(7), pages 681-689, May.
    15. Perea, Federico & Puerto, Justo, 2013. "Revisiting a game theoretic framework for the robust railway network design against intentional attacks," European Journal of Operational Research, Elsevier, vol. 226(2), pages 286-292.
    16. Starita, Stefano & Scaparra, Maria Paola, 2016. "Optimizing dynamic investment decisions for railway systems protection," European Journal of Operational Research, Elsevier, vol. 248(2), pages 543-557.
    17. Koichi Nabetani & Paul Tseng & Masao Fukushima, 2011. "Parametrized variational inequality approaches to generalized Nash equilibrium problems with shared constraints," Computational Optimization and Applications, Springer, vol. 48(3), pages 423-452, April.
    18. B. Curtis Eaves, 1971. "The Linear Complementarity Problem," Management Science, INFORMS, vol. 17(9), pages 612-634, May.
    19. Francisco Facchinei & Christian Kanzow, 2010. "Generalized Nash Equilibrium Problems," Annals of Operations Research, Springer, vol. 175(1), pages 177-211, March.
    20. José R. Correa & Andreas S. Schulz & Nicolás E. Stier-Moses, 2004. "Selfish Routing in Capacitated Networks," Mathematics of Operations Research, INFORMS, vol. 29(4), pages 961-976, November.
    21. Ramesh Johari & John N. Tsitsiklis, 2004. "Efficiency Loss in a Network Resource Allocation Game," Mathematics of Operations Research, INFORMS, vol. 29(3), pages 407-435, August.
    22. Ramesh Johari & John N. Tsitsiklis, 2009. "Efficiency of Scalar-Parameterized Mechanisms," Operations Research, INFORMS, vol. 57(4), pages 823-839, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kameda, Hisao, 2021. "Magnitude of inefficiency," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1133-1145.
    2. Konrad, Renata A. & Maass, Kayse Lee & Dimas, Geri L. & Trapp, Andrew C., 2023. "Perspectives on how to conduct responsible anti-human trafficking research in operations and analytics," European Journal of Operational Research, Elsevier, vol. 309(1), pages 319-329.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Deren & Zhang, Hongchao & Qian, Gang & Xu, Lingling, 2012. "An improved two-step method for solving generalized Nash equilibrium problems," European Journal of Operational Research, Elsevier, vol. 216(3), pages 613-623.
    2. Jiawang Nie & Xindong Tang & Lingling Xu, 2021. "The Gauss–Seidel method for generalized Nash equilibrium problems of polynomials," Computational Optimization and Applications, Springer, vol. 78(2), pages 529-557, March.
    3. Giancarlo Bigi & Mauro Passacantando, 2016. "Gap functions for quasi-equilibria," Journal of Global Optimization, Springer, vol. 66(4), pages 791-810, December.
    4. Migot, Tangi & Cojocaru, Monica-G., 2020. "A parametrized variational inequality approach to track the solution set of a generalized nash equilibrium problem," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1136-1147.
    5. Vladimir Shikhman, 2022. "On local uniqueness of normalized Nash equilibria," Papers 2205.13878, arXiv.org.
    6. Francisco Facchinei & Jong-Shi Pang & Gesualdo Scutari, 2014. "Non-cooperative games with minmax objectives," Computational Optimization and Applications, Springer, vol. 59(1), pages 85-112, October.
    7. Alexey Izmailov & Mikhail Solodov, 2014. "On error bounds and Newton-type methods for generalized Nash equilibrium problems," Computational Optimization and Applications, Springer, vol. 59(1), pages 201-218, October.
    8. Le Cadre, Hélène & Mou, Yuting & Höschle, Hanspeter, 2022. "Parametrized Inexact-ADMM based coordination games: A normalized Nash equilibrium approach," European Journal of Operational Research, Elsevier, vol. 296(2), pages 696-716.
    9. Starita, Stefano & Scaparra, Maria Paola, 2016. "Optimizing dynamic investment decisions for railway systems protection," European Journal of Operational Research, Elsevier, vol. 248(2), pages 543-557.
    10. Hélène Le Cadre & Yuting Mou & Hanspeter Höschle, 2020. "Parametrized Inexact-ADMM to Span the Set of Generalized Nash Equilibria: A Normalized Equilibrium Approach," Working Papers hal-02925005, HAL.
    11. Axel Dreves, 2019. "An algorithm for equilibrium selection in generalized Nash equilibrium problems," Computational Optimization and Applications, Springer, vol. 73(3), pages 821-837, July.
    12. Le Cadre, Hélène & Jacquot, Paulin & Wan, Cheng & Alasseur, Clémence, 2020. "Peer-to-peer electricity market analysis: From variational to Generalized Nash Equilibrium," European Journal of Operational Research, Elsevier, vol. 282(2), pages 753-771.
    13. Leitner, Markus & Ljubić, Ivana & Monaci, Michele & Sinnl, Markus & Tanınmış, Kübra, 2023. "An exact method for binary fortification games," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1026-1039.
    14. Musegaas, Marieke & Schlicher, Loe & Blok, Herman, 2022. "Stackelberg production-protection games: Defending crop production against intentional attacks," European Journal of Operational Research, Elsevier, vol. 297(1), pages 102-119.
    15. Jacquot, Paulin & Wan, Cheng, 2022. "Nonatomic aggregative games with infinitely many types," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1149-1165.
    16. Axel Dreves, 2017. "Computing all solutions of linear generalized Nash equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(2), pages 207-221, April.
    17. Smith, J. Cole & Song, Yongjia, 2020. "A survey of network interdiction models and algorithms," European Journal of Operational Research, Elsevier, vol. 283(3), pages 797-811.
    18. Christian Kanzow & Daniel Steck, 2018. "Augmented Lagrangian and exact penalty methods for quasi-variational inequalities," Computational Optimization and Applications, Springer, vol. 69(3), pages 801-824, April.
    19. Rodica Ioana Lung & Noémi Gaskó & Mihai Alexandru Suciu, 2020. "Pareto-based evolutionary multiobjective approaches and the generalized Nash equilibrium problem," Journal of Heuristics, Springer, vol. 26(4), pages 561-584, August.
    20. Simone Sagratella, 2017. "Algorithms for generalized potential games with mixed-integer variables," Computational Optimization and Applications, Springer, vol. 68(3), pages 689-717, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:288:y:2021:i:2:p:523-538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.