An algorithm for equilibrium selection in generalized Nash equilibrium problems
Author
Abstract
Suggested Citation
DOI: 10.1007/s10589-019-00086-w
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- John C. Harsanyi & Reinhard Selten, 1988. "A General Theory of Equilibrium Selection in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262582384, December.
- Koichi Nabetani & Paul Tseng & Masao Fukushima, 2011. "Parametrized variational inequality approaches to generalized Nash equilibrium problems with shared constraints," Computational Optimization and Applications, Springer, vol. 48(3), pages 423-452, April.
- Axel Dreves, 2018. "How to Select a Solution in Generalized Nash Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 178(3), pages 973-997, September.
- Francisco Facchinei & Christian Kanzow, 2010. "Generalized Nash Equilibrium Problems," Annals of Operations Research, Springer, vol. 175(1), pages 177-211, March.
- Francisco Facchinei & Christian Kanzow & Sebastian Karl & Simone Sagratella, 2015. "The semismooth Newton method for the solution of quasi-variational inequalities," Computational Optimization and Applications, Springer, vol. 62(1), pages 85-109, September.
- Harker, Patrick T., 1991. "Generalized Nash games and quasi-variational inequalities," European Journal of Operational Research, Elsevier, vol. 54(1), pages 81-94, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Alberto De Marchi & Axel Dreves & Matthias Gerdts & Simon Gottschalk & Sergejs Rogovs, 2023. "A Function Approximation Approach for Parametric Optimization," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 56-77, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Axel Dreves, 2018. "How to Select a Solution in Generalized Nash Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 178(3), pages 973-997, September.
- Alexey Izmailov & Mikhail Solodov, 2014. "On error bounds and Newton-type methods for generalized Nash equilibrium problems," Computational Optimization and Applications, Springer, vol. 59(1), pages 201-218, October.
- Migot, Tangi & Cojocaru, Monica-G., 2020. "A parametrized variational inequality approach to track the solution set of a generalized nash equilibrium problem," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1136-1147.
- Han, Deren & Zhang, Hongchao & Qian, Gang & Xu, Lingling, 2012. "An improved two-step method for solving generalized Nash equilibrium problems," European Journal of Operational Research, Elsevier, vol. 216(3), pages 613-623.
- Jiawang Nie & Xindong Tang & Lingling Xu, 2021. "The Gauss–Seidel method for generalized Nash equilibrium problems of polynomials," Computational Optimization and Applications, Springer, vol. 78(2), pages 529-557, March.
- Sreekumaran, Harikrishnan & Hota, Ashish R. & Liu, Andrew L. & Uhan, Nelson A. & Sundaram, Shreyas, 2021. "Equilibrium strategies for multiple interdictors on a common network," European Journal of Operational Research, Elsevier, vol. 288(2), pages 523-538.
- Christian Kanzow & Daniel Steck, 2018. "Augmented Lagrangian and exact penalty methods for quasi-variational inequalities," Computational Optimization and Applications, Springer, vol. 69(3), pages 801-824, April.
- Nadja Harms & Tim Hoheisel & Christian Kanzow, 2015. "On a Smooth Dual Gap Function for a Class of Player Convex Generalized Nash Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 659-685, August.
- Letícia Becher & Damián Fernández & Alberto Ramos, 2023. "A trust-region LP-Newton method for constrained nonsmooth equations under Hölder metric subregularity," Computational Optimization and Applications, Springer, vol. 86(2), pages 711-743, November.
- Leonardo Galli & Christian Kanzow & Marco Sciandrone, 2018. "A nonmonotone trust-region method for generalized Nash equilibrium and related problems with strong convergence properties," Computational Optimization and Applications, Springer, vol. 69(3), pages 629-652, April.
- Simone Sagratella, 2017. "Algorithms for generalized potential games with mixed-integer variables," Computational Optimization and Applications, Springer, vol. 68(3), pages 689-717, December.
- Vladimir Shikhman, 2022. "On local uniqueness of normalized Nash equilibria," Papers 2205.13878, arXiv.org.
- Stein, Oliver & Sudermann-Merx, Nathan, 2018. "The noncooperative transportation problem and linear generalized Nash games," European Journal of Operational Research, Elsevier, vol. 266(2), pages 543-553.
- Le Cadre, Hélène & Mou, Yuting & Höschle, Hanspeter, 2022. "Parametrized Inexact-ADMM based coordination games: A normalized Nash equilibrium approach," European Journal of Operational Research, Elsevier, vol. 296(2), pages 696-716.
- Abhishek Singh & Debdas Ghosh & Qamrul Hasan Ansari, 2024. "Inexact Newton Method for Solving Generalized Nash Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 201(3), pages 1333-1363, June.
- Sonja Brangewitz & Gaël Giraud, 2012.
"Learning by Trading in Infinite Horizon Strategic Market Games with Default,"
Documents de travail du Centre d'Economie de la Sorbonne
12062r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Oct 2013.
- Sonja Brangewitz & Gaël Giraud, 2012. "Learning by Trading in Infinite Horizon Strategic Market Games with Default," Post-Print halshs-00747899, HAL.
- Sonja Brangewitz & Gaël Giraud, 2012. "Learning by Trading in Infinite Horizon Strategic Market Games with Default," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00747899, HAL.
- Sonja Brangewitz & Gaël Giraud, 2012. "Learning by Trading in Infinite Horizon Strategic Market Games with Default," Documents de travail du Centre d'Economie de la Sorbonne 12062, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
- Yann BRAOUEZEC & Keyvan KIANI, 2021. "Economic foundations of generalized games with shared constraint: Do binding agreements lead to less Nash equilibria?," Working Papers 2021-ACF-06, IESEG School of Management.
- Pin-Bo Chen & Gui-Hua Lin & Xide Zhu & Fusheng Bai, 2021. "Smoothing Newton method for nonsmooth second-order cone complementarity problems with application to electric power markets," Journal of Global Optimization, Springer, vol. 80(3), pages 635-659, July.
- Shipra Singh & Aviv Gibali & Simeon Reich, 2021. "Multi-Time Generalized Nash Equilibria with Dynamic Flow Applications," Mathematics, MDPI, vol. 9(14), pages 1-23, July.
- Hélène Le Cadre & Yuting Mou & Hanspeter Höschle, 2020. "Parametrized Inexact-ADMM to Span the Set of Generalized Nash Equilibria: A Normalized Equilibrium Approach," Working Papers hal-02925005, HAL.
More about this item
Keywords
Generalized Nash equilibrium problem; Equilibrium selection problem; Semismooth Newton method; Pathfollowing;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:73:y:2019:i:3:d:10.1007_s10589-019-00086-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.