IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i14p1658-d594103.html
   My bibliography  Save this article

Multi-Time Generalized Nash Equilibria with Dynamic Flow Applications

Author

Listed:
  • Shipra Singh

    (Department of Mathematics, The Technion—Israel Institute of Technology, Haifa 3200003, Israel
    These authors contributed equally to this work.)

  • Aviv Gibali

    (Department of Mathematics, ORT Braude College, Karmiel 2161002, Israel
    The Center for Mathematics and Scientific Computation, University of Haifa, Haifa 3498838, Israel
    These authors contributed equally to this work.)

  • Simeon Reich

    (Department of Mathematics, The Technion—Israel Institute of Technology, Haifa 3200003, Israel
    These authors contributed equally to this work.)

Abstract

We propose a multi-time generalized Nash equilibrium problem and prove its equivalence with a multi-time quasi-variational inequality problem. Then, we establish the existence of equilibria. Furthermore, we demonstrate that our multi-time generalized Nash equilibrium problem can be applied to solving traffic network problems, the aim of which is to minimize the traffic cost of each route and to solving a river basin pollution problem. Moreover, we also study the proposed multi-time generalized Nash equilibrium problem as a projected dynamical system and numerically illustrate our theoretical results.

Suggested Citation

  • Shipra Singh & Aviv Gibali & Simeon Reich, 2021. "Multi-Time Generalized Nash Equilibria with Dynamic Flow Applications," Mathematics, MDPI, vol. 9(14), pages 1-23, July.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:14:p:1658-:d:594103
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/14/1658/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/14/1658/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. K. Kubota & M. Fukushima, 2010. "Gap Function Approach to the Generalized Nash Equilibrium Problem," Journal of Optimization Theory and Applications, Springer, vol. 144(3), pages 511-531, March.
    2. Didier Aussel & Rachana Gupta & Aparna Mehra, 2016. "Evolutionary Variational Inequality Formulation of the Generalized Nash Equilibrium Problem," Journal of Optimization Theory and Applications, Springer, vol. 169(1), pages 74-90, April.
    3. Stella Dafermos, 1980. "Traffic Equilibrium and Variational Inequalities," Transportation Science, INFORMS, vol. 14(1), pages 42-54, February.
    4. Smith, M. J., 1979. "The existence, uniqueness and stability of traffic equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 13(4), pages 295-304, December.
    5. Harker, Patrick T., 1991. "Generalized Nash games and quasi-variational inequalities," European Journal of Operational Research, Elsevier, vol. 54(1), pages 81-94, September.
    6. Nagurney, Anna & Liu, Zugang & Cojocaru, Monica-Gabriela & Daniele, Patrizia, 2007. "Dynamic electric power supply chains and transportation networks: An evolutionary variational inequality formulation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(5), pages 624-646, September.
    7. Jong-Shi Pang & Masao Fukushima, 2005. "Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games," Computational Management Science, Springer, vol. 2(1), pages 21-56, January.
    8. Krawczyk, Jacek B., 2005. "Coupled constraint Nash equilibria in environmental games," Resource and Energy Economics, Elsevier, vol. 27(2), pages 157-181, June.
    9. Daniele, Patrizia, 2010. "Evolutionary variational inequalities and applications to complex dynamic multi-level models," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(6), pages 855-880, November.
    10. Francisco Facchinei & Christian Kanzow, 2010. "Generalized Nash Equilibrium Problems," Annals of Operations Research, Springer, vol. 175(1), pages 177-211, March.
    11. ,, 2000. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 16(2), pages 287-299, April.
    12. Yekini Shehu & Aviv Gibali & Simone Sagratella, 2020. "Inertial Projection-Type Methods for Solving Quasi-Variational Inequalities in Real Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 877-894, March.
    13. Jayswal, Anurag & Singh, Shipra & Kurdi, Alia, 2016. "Multitime multiobjective variational problems and vector variational-like inequalities," European Journal of Operational Research, Elsevier, vol. 254(3), pages 739-745.
    14. M. G. Cojocaru & P. Daniele & A. Nagurney, 2005. "Projected Dynamical Systems and Evolutionary Variational Inequalities via Hilbert Spaces with Applications1," Journal of Optimization Theory and Applications, Springer, vol. 127(3), pages 549-563, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shipra Singh & Aviv Gibali & Simeon Reich, 2024. "Multidimensional Evolution Effects on Non-Cooperative Strategic Games," Mathematics, MDPI, vol. 12(16), pages 1-30, August.
    2. Alexey Izmailov & Mikhail Solodov, 2014. "On error bounds and Newton-type methods for generalized Nash equilibrium problems," Computational Optimization and Applications, Springer, vol. 59(1), pages 201-218, October.
    3. Han, Deren & Zhang, Hongchao & Qian, Gang & Xu, Lingling, 2012. "An improved two-step method for solving generalized Nash equilibrium problems," European Journal of Operational Research, Elsevier, vol. 216(3), pages 613-623.
    4. Giancarlo Bigi & Mauro Passacantando, 2016. "Gap functions for quasi-equilibria," Journal of Global Optimization, Springer, vol. 66(4), pages 791-810, December.
    5. Francisco Facchinei & Jong-Shi Pang & Gesualdo Scutari, 2014. "Non-cooperative games with minmax objectives," Computational Optimization and Applications, Springer, vol. 59(1), pages 85-112, October.
    6. Giorgia Oggioni & Yves Smeers & Elisabetta Allevi & Siegfried Schaible, 2012. "A Generalized Nash Equilibrium Model of Market Coupling in the European Power System," Networks and Spatial Economics, Springer, vol. 12(4), pages 503-560, December.
    7. Nadja Harms & Tim Hoheisel & Christian Kanzow, 2015. "On a Smooth Dual Gap Function for a Class of Player Convex Generalized Nash Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 659-685, August.
    8. J. Contreras & J. B. Krawczyk & J. Zuccollo, 2016. "Economics of collective monitoring: a study of environmentally constrained electricity generators," Computational Management Science, Springer, vol. 13(3), pages 349-369, July.
    9. Migot, Tangi & Cojocaru, Monica-G., 2020. "A parametrized variational inequality approach to track the solution set of a generalized nash equilibrium problem," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1136-1147.
    10. Francisco Facchinei & Christian Kanzow, 2010. "Generalized Nash Equilibrium Problems," Annals of Operations Research, Springer, vol. 175(1), pages 177-211, March.
    11. Axel Dreves, 2016. "Improved error bound and a hybrid method for generalized Nash equilibrium problems," Computational Optimization and Applications, Springer, vol. 65(2), pages 431-448, November.
    12. Jacek B. Krawczyk & Mabel Tidball, 2016. "Economic Problems with Constraints: How Efficiency Relates to Equilibrium," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1-19, December.
    13. Yann BRAOUEZEC & Keyvan KIANI, 2021. "Economic foundations of generalized games with shared constraint: Do binding agreements lead to less Nash equilibria?," Working Papers 2021-ACF-06, IESEG School of Management.
    14. Axel Dreves & Francisco Facchinei & Andreas Fischer & Markus Herrich, 2014. "A new error bound result for Generalized Nash Equilibrium Problems and its algorithmic application," Computational Optimization and Applications, Springer, vol. 59(1), pages 63-84, October.
    15. Masao Fukushima, 2011. "Restricted generalized Nash equilibria and controlled penalty algorithm," Computational Management Science, Springer, vol. 8(3), pages 201-218, August.
    16. K. Kubota & M. Fukushima, 2010. "Gap Function Approach to the Generalized Nash Equilibrium Problem," Journal of Optimization Theory and Applications, Springer, vol. 144(3), pages 511-531, March.
    17. Laura Scrimali, 2012. "Infinite Dimensional Duality Theory Applied to Investment Strategies in Environmental Policy," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 258-277, July.
    18. L. F. Bueno & G. Haeser & F. Lara & F. N. Rojas, 2020. "An Augmented Lagrangian method for quasi-equilibrium problems," Computational Optimization and Applications, Springer, vol. 76(3), pages 737-766, July.
    19. Allevi, E. & Conejo, A.J. & Oggioni, G. & Riccardi, R. & Ruiz, C., 2018. "Evaluating the strategic behavior of cement producers: An equilibrium problem with equilibrium constraints," European Journal of Operational Research, Elsevier, vol. 264(2), pages 717-731.
    20. Jiawang Nie & Xindong Tang & Lingling Xu, 2021. "The Gauss–Seidel method for generalized Nash equilibrium problems of polynomials," Computational Optimization and Applications, Springer, vol. 78(2), pages 529-557, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:14:p:1658-:d:594103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.