IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v180y2019i3d10.1007_s10957-018-1407-1.html
   My bibliography  Save this article

On the Local and Superlinear Convergence of a Secant Modified Linear-Programming-Newton Method

Author

Listed:
  • María de los Ángeles Martínez

    (Universidad Nacional de Córdoba)

  • Damián Fernández

    (Universidad Nacional de Córdoba)

Abstract

We present a superlinearly convergent method to solve a constrained system of nonlinear equations. The proposed procedure is an adaptation of the linear-programming-Newton method replacing the first-order information with a secant update. Thus, under mild assumptions, the method is able to find possible nonisolated solutions without computing any derivative and achieving a local superlinear rate of convergence. In addition to the convergence analysis, some numerical examples are presented in order to show the fulfillment of the expected rate of convergence.

Suggested Citation

  • María de los Ángeles Martínez & Damián Fernández, 2019. "On the Local and Superlinear Convergence of a Secant Modified Linear-Programming-Newton Method," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 993-1010, March.
  • Handle: RePEc:spr:joptap:v:180:y:2019:i:3:d:10.1007_s10957-018-1407-1
    DOI: 10.1007/s10957-018-1407-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-018-1407-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-018-1407-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andreas Fischer & Markus Herrich & Alexey Izmailov & Mikhail Solodov, 2016. "Convergence conditions for Newton-type methods applied to complementarity systems with nonisolated solutions," Computational Optimization and Applications, Springer, vol. 63(2), pages 425-459, March.
    2. Alexey Izmailov & Mikhail Solodov, 2014. "On error bounds and Newton-type methods for generalized Nash equilibrium problems," Computational Optimization and Applications, Springer, vol. 59(1), pages 201-218, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leonardo Galli & Christian Kanzow & Marco Sciandrone, 2018. "A nonmonotone trust-region method for generalized Nash equilibrium and related problems with strong convergence properties," Computational Optimization and Applications, Springer, vol. 69(3), pages 629-652, April.
    2. Simone Sagratella, 2017. "Algorithms for generalized potential games with mixed-integer variables," Computational Optimization and Applications, Springer, vol. 68(3), pages 689-717, December.
    3. A. Fischer & M. Herrich & A. F. Izmailov & W. Scheck & M. V. Solodov, 2018. "A globally convergent LP-Newton method for piecewise smooth constrained equations: escaping nonstationary accumulation points," Computational Optimization and Applications, Springer, vol. 69(2), pages 325-349, March.
    4. Lu-Ping Liu & Wen-Sheng Jia, 2021. "An Intelligent Algorithm for Solving the Efficient Nash Equilibrium of a Single-Leader Multi-Follower Game," Mathematics, MDPI, vol. 9(5), pages 1-14, February.
    5. A. F. Izmailov & M. V. Solodov & E. I. Uskov, 2019. "A globally convergent Levenberg–Marquardt method for equality-constrained optimization," Computational Optimization and Applications, Springer, vol. 72(1), pages 215-239, January.
    6. Andreas Fischer & Alexey F. Izmailov & Mikhail V. Solodov, 2019. "Local Attractors of Newton-Type Methods for Constrained Equations and Complementarity Problems with Nonisolated Solutions," Journal of Optimization Theory and Applications, Springer, vol. 180(1), pages 140-169, January.
    7. Jun Pei & Zorica Dražić & Milan Dražić & Nenad Mladenović & Panos M. Pardalos, 2019. "Continuous Variable Neighborhood Search (C-VNS) for Solving Systems of Nonlinear Equations," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 235-250, April.
    8. Giancarlo Bigi & Mauro Passacantando, 2016. "Gap functions for quasi-equilibria," Journal of Global Optimization, Springer, vol. 66(4), pages 791-810, December.
    9. A. Fischer & A. F. Izmailov & M. Jelitte, 2021. "Newton-type methods near critical solutions of piecewise smooth nonlinear equations," Computational Optimization and Applications, Springer, vol. 80(2), pages 587-615, November.
    10. Axel Dreves & Simone Sagratella, 2020. "Nonsingularity and Stationarity Results for Quasi-Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 711-743, June.
    11. Andreas Fischer & Markus Herrich & Alexey Izmailov & Mikhail Solodov, 2016. "Convergence conditions for Newton-type methods applied to complementarity systems with nonisolated solutions," Computational Optimization and Applications, Springer, vol. 63(2), pages 425-459, March.
    12. Axel Dreves, 2017. "Computing all solutions of linear generalized Nash equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(2), pages 207-221, April.
    13. Andreas Fischer, 2015. "Comments on: Critical Lagrange multipliers: what we currently know about them, how they spoil our lives, and what we can do about it," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 27-31, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:180:y:2019:i:3:d:10.1007_s10957-018-1407-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.