IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v78y2021i2d10.1007_s10589-020-00242-7.html
   My bibliography  Save this article

The Gauss–Seidel method for generalized Nash equilibrium problems of polynomials

Author

Listed:
  • Jiawang Nie

    (University of California San Diego)

  • Xindong Tang

    (University of California San Diego)

  • Lingling Xu

    (Jiangsu Key Laboratory for NSLSCS, Nanjing Normal University)

Abstract

This paper concerns the generalized Nash equilibrium problem of polynomials (GNEPP). We apply the Gauss–Seidel method and Moment-SOS relaxations to solve GNEPPs. The convergence of the Gauss–Seidel method is known for some special GNEPPs, such as generalized potential games (GPGs). We give a sufficient condition for GPGs and propose a numerical certificate, based on Putinar’s Positivstellensatz. Numerical examples for both convex and nonconvex GNEPPs are given for demonstrating the efficiency of the proposed method.

Suggested Citation

  • Jiawang Nie & Xindong Tang & Lingling Xu, 2021. "The Gauss–Seidel method for generalized Nash equilibrium problems of polynomials," Computational Optimization and Applications, Springer, vol. 78(2), pages 529-557, March.
  • Handle: RePEc:spr:coopap:v:78:y:2021:i:2:d:10.1007_s10589-020-00242-7
    DOI: 10.1007/s10589-020-00242-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-020-00242-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-020-00242-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francisco Facchinei & Lorenzo Lampariello, 2011. "Partial penalization for the solution of generalized Nash equilibrium problems," Journal of Global Optimization, Springer, vol. 50(1), pages 39-57, May.
    2. Zhou, Jing & Lam, William H.K. & Heydecker, Benjamin G., 2005. "The generalized Nash equilibrium model for oligopolistic transit market with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 39(6), pages 519-544, July.
    3. A. Heusinger & C. Kanzow, 2009. "Relaxation Methods for Generalized Nash Equilibrium Problems with Inexact Line Search," Journal of Optimization Theory and Applications, Springer, vol. 143(1), pages 159-183, October.
    4. Morgan, Jacqueline & Scalzo, Vincenzo, 2007. "Pseudocontinuous functions and existence of Nash equilibria," Journal of Mathematical Economics, Elsevier, vol. 43(2), pages 174-183, February.
    5. Koichi Nabetani & Paul Tseng & Masao Fukushima, 2011. "Parametrized variational inequality approaches to generalized Nash equilibrium problems with shared constraints," Computational Optimization and Applications, Springer, vol. 48(3), pages 423-452, April.
    6. Stephen M. Robinson, 1993. "Shadow Prices for Measures of Effectiveness, II: General Model," Operations Research, INFORMS, vol. 41(3), pages 536-548, June.
    7. Francisco Facchinei & Christian Kanzow, 2010. "Generalized Nash Equilibrium Problems," Annals of Operations Research, Springer, vol. 175(1), pages 177-211, March.
    8. Didier Aussel & Simone Sagratella, 2017. "Sufficient conditions to compute any solution of a quasivariational inequality via a variational inequality," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(1), pages 3-18, February.
    9. Axel Dreves & Francisco Facchinei & Andreas Fischer & Markus Herrich, 2014. "A new error bound result for Generalized Nash Equilibrium Problems and its algorithmic application," Computational Optimization and Applications, Springer, vol. 59(1), pages 63-84, October.
    10. Anna Heusinger & Christian Kanzow, 2009. "Optimization reformulations of the generalized Nash equilibrium problem using Nikaido-Isoda-type functions," Computational Optimization and Applications, Springer, vol. 43(3), pages 353-377, July.
    11. Masao Fukushima, 2011. "Restricted generalized Nash equilibria and controlled penalty algorithm," Computational Management Science, Springer, vol. 8(3), pages 201-218, August.
    12. Sun, Lian-Ju & Gao, Zi-You, 2007. "An equilibrium model for urban transit assignment based on game theory," European Journal of Operational Research, Elsevier, vol. 181(1), pages 305-314, August.
    13. Simone Sagratella, 2017. "Algorithms for generalized potential games with mixed-integer variables," Computational Optimization and Applications, Springer, vol. 68(3), pages 689-717, December.
    14. Anselmi, Jonatha & Ardagna, Danilo & Passacantando, Mauro, 2014. "Generalized Nash equilibria for SaaS/PaaS Clouds," European Journal of Operational Research, Elsevier, vol. 236(1), pages 326-339.
    15. Harker, Patrick T., 1991. "Generalized Nash games and quasi-variational inequalities," European Journal of Operational Research, Elsevier, vol. 54(1), pages 81-94, September.
    16. Jong-Shi Pang & Masao Fukushima, 2005. "Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games," Computational Management Science, Springer, vol. 2(1), pages 21-56, January.
    17. Francisco Facchinei & Veronica Piccialli & Marco Sciandrone, 2011. "Decomposition algorithms for generalized potential games," Computational Optimization and Applications, Springer, vol. 50(2), pages 237-262, October.
    18. Stephen M. Robinson, 1993. "Shadow Prices for Measures of Effectiveness, I: Linear Model," Operations Research, INFORMS, vol. 41(3), pages 518-535, June.
    19. Breton, Michele & Zaccour, Georges & Zahaf, Mehdi, 2006. "A game-theoretic formulation of joint implementation of environmental projects," European Journal of Operational Research, Elsevier, vol. 168(1), pages 221-239, January.
    20. Eleftherios Couzoudis & Philipp Renner, 2013. "Computing generalized Nash equilibria by polynomial programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(3), pages 459-472, June.
    21. Simone Sagratella, 2017. "Computing equilibria of Cournot oligopoly models with mixed-integer quantities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(3), pages 549-565, December.
    22. Giorgia Oggioni & Yves Smeers & Elisabetta Allevi & Siegfried Schaible, 2012. "A Generalized Nash Equilibrium Model of Market Coupling in the European Power System," Networks and Spatial Economics, Springer, vol. 12(4), pages 503-560, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Deren & Zhang, Hongchao & Qian, Gang & Xu, Lingling, 2012. "An improved two-step method for solving generalized Nash equilibrium problems," European Journal of Operational Research, Elsevier, vol. 216(3), pages 613-623.
    2. Francisco Facchinei & Christian Kanzow, 2010. "Generalized Nash Equilibrium Problems," Annals of Operations Research, Springer, vol. 175(1), pages 177-211, March.
    3. Migot, Tangi & Cojocaru, Monica-G., 2020. "A parametrized variational inequality approach to track the solution set of a generalized nash equilibrium problem," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1136-1147.
    4. Simone Sagratella, 2017. "Algorithms for generalized potential games with mixed-integer variables," Computational Optimization and Applications, Springer, vol. 68(3), pages 689-717, December.
    5. Giancarlo Bigi & Mauro Passacantando, 2016. "Gap functions for quasi-equilibria," Journal of Global Optimization, Springer, vol. 66(4), pages 791-810, December.
    6. Stein, Oliver & Sudermann-Merx, Nathan, 2018. "The noncooperative transportation problem and linear generalized Nash games," European Journal of Operational Research, Elsevier, vol. 266(2), pages 543-553.
    7. Masao Fukushima, 2011. "Restricted generalized Nash equilibria and controlled penalty algorithm," Computational Management Science, Springer, vol. 8(3), pages 201-218, August.
    8. Axel Dreves & Simone Sagratella, 2020. "Nonsingularity and Stationarity Results for Quasi-Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 711-743, June.
    9. Sagratella, Simone & Schmidt, Marcel & Sudermann-Merx, Nathan, 2020. "The noncooperative fixed charge transportation problem," European Journal of Operational Research, Elsevier, vol. 284(1), pages 373-382.
    10. Christian Kanzow & Daniel Steck, 2018. "Augmented Lagrangian and exact penalty methods for quasi-variational inequalities," Computational Optimization and Applications, Springer, vol. 69(3), pages 801-824, April.
    11. Lorenzo Lampariello & Simone Sagratella, 2020. "Numerically tractable optimistic bilevel problems," Computational Optimization and Applications, Springer, vol. 76(2), pages 277-303, June.
    12. Abhishek Singh & Debdas Ghosh & Qamrul Hasan Ansari, 2024. "Inexact Newton Method for Solving Generalized Nash Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 201(3), pages 1333-1363, June.
    13. Lampariello, Lorenzo & Neumann, Christoph & Ricci, Jacopo M. & Sagratella, Simone & Stein, Oliver, 2021. "Equilibrium selection for multi-portfolio optimization," European Journal of Operational Research, Elsevier, vol. 295(1), pages 363-373.
    14. Axel Dreves & Anna Heusinger & Christian Kanzow & Masao Fukushima, 2013. "A globalized Newton method for the computation of normalized Nash equilibria," Journal of Global Optimization, Springer, vol. 56(2), pages 327-340, June.
    15. Francisco Facchinei & Jong-Shi Pang & Gesualdo Scutari, 2014. "Non-cooperative games with minmax objectives," Computational Optimization and Applications, Springer, vol. 59(1), pages 85-112, October.
    16. Sreekumaran, Harikrishnan & Hota, Ashish R. & Liu, Andrew L. & Uhan, Nelson A. & Sundaram, Shreyas, 2021. "Equilibrium strategies for multiple interdictors on a common network," European Journal of Operational Research, Elsevier, vol. 288(2), pages 523-538.
    17. Rodica Ioana Lung & Noémi Gaskó & Mihai Alexandru Suciu, 2020. "Pareto-based evolutionary multiobjective approaches and the generalized Nash equilibrium problem," Journal of Heuristics, Springer, vol. 26(4), pages 561-584, August.
    18. Axel Dreves & Christian Kanzow, 2011. "Nonsmooth optimization reformulations characterizing all solutions of jointly convex generalized Nash equilibrium problems," Computational Optimization and Applications, Springer, vol. 50(1), pages 23-48, September.
    19. Alexey Izmailov & Mikhail Solodov, 2014. "On error bounds and Newton-type methods for generalized Nash equilibrium problems," Computational Optimization and Applications, Springer, vol. 59(1), pages 201-218, October.
    20. J. Contreras & J. B. Krawczyk & J. Zuccollo, 2016. "Economics of collective monitoring: a study of environmentally constrained electricity generators," Computational Management Science, Springer, vol. 13(3), pages 349-369, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:78:y:2021:i:2:d:10.1007_s10589-020-00242-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.