IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v32y2017i1d10.1007_s00180-016-0643-9.html
   My bibliography  Save this article

Issues in the Multiple Try Metropolis mixing

Author

Listed:
  • L. Martino

    (Universidade de São Paulo)

  • F. Louzada

    (Universidade de São Paulo)

Abstract

The Multiple Try Metropolis (MTM) algorithm is an advanced MCMC technique based on drawing and testing several candidates at each iteration of the algorithm. One of them is selected according to certain weights and then it is tested according to a suitable acceptance probability. Clearly, since the computational cost increases as the employed number of tries grows, one expects that the performance of an MTM scheme improves as the number of tries increases, as well. However, there are scenarios where the increase of number of tries does not produce a corresponding enhancement of the performance. In this work, we describe these scenarios and then we introduce possible solutions for solving these issues.

Suggested Citation

  • L. Martino & F. Louzada, 2017. "Issues in the Multiple Try Metropolis mixing," Computational Statistics, Springer, vol. 32(1), pages 239-252, March.
  • Handle: RePEc:spr:compst:v:32:y:2017:i:1:d:10.1007_s00180-016-0643-9
    DOI: 10.1007/s00180-016-0643-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-016-0643-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-016-0643-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jean-Marie Cornuet & Jean-Michel Marin & Antonietta Mira & Christian P. Robert, 2012. "Adaptive Multiple Importance Sampling," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 39(4), pages 798-812, December.
    2. Bédard, Mylène & Douc, Randal & Moulines, Eric, 2012. "Scaling analysis of multiple-try MCMC methods," Stochastic Processes and their Applications, Elsevier, vol. 122(3), pages 758-786.
    3. Luca Martino & Jesse Read, 2013. "On the flexibility of the design of multiple try Metropolis schemes," Computational Statistics, Springer, vol. 28(6), pages 2797-2823, December.
    4. repec:dau:papers:123456789/10690 is not listed on IDEAS
    5. Martino, Luca & Del Olmo, Victor Pascual & Read, Jesse, 2012. "A multi-point Metropolis scheme with generic weight functions," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1445-1453.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Luo & Håkon Tjelmeland, 2019. "A multiple-try Metropolis–Hastings algorithm with tailored proposals," Computational Statistics, Springer, vol. 34(3), pages 1109-1133, September.
    2. F. Din-Houn Lau & Sebastian Krumscheid, 2022. "Plateau proposal distributions for adaptive component-wise multiple-try metropolis," METRON, Springer;Sapienza Università di Roma, vol. 80(3), pages 343-370, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Luo & Håkon Tjelmeland, 2019. "A multiple-try Metropolis–Hastings algorithm with tailored proposals," Computational Statistics, Springer, vol. 34(3), pages 1109-1133, September.
    2. Fabrizio Leisen & Roberto Casarin & David Luengo & Luca Martino, 2013. "Adaptive Sticky Generalized Metropolis," Working Papers 2013:19, Department of Economics, University of Venice "Ca' Foscari".
    3. Holbrook, Andrew J., 2023. "Generating MCMC proposals by randomly rotating the regular simplex," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    4. Luca Martino & Jesse Read, 2013. "On the flexibility of the design of multiple try Metropolis schemes," Computational Statistics, Springer, vol. 28(6), pages 2797-2823, December.
    5. Gagnon, Philippe & Bédard, Mylène & Desgagné, Alain, 2019. "Weak convergence and optimal tuning of the reversible jump algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 161(C), pages 32-51.
    6. Pandolfi, Silvia & Bartolucci, Francesco & Friel, Nial, 2014. "A generalized multiple-try version of the Reversible Jump algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 298-314.
    7. Shields, Michael D., 2018. "Adaptive Monte Carlo analysis for strongly nonlinear stochastic systems," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 207-224.
    8. Yang, Jun & Roberts, Gareth O. & Rosenthal, Jeffrey S., 2020. "Optimal scaling of random-walk metropolis algorithms on general target distributions," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 6094-6132.
    9. F. Din-Houn Lau & Sebastian Krumscheid, 2022. "Plateau proposal distributions for adaptive component-wise multiple-try metropolis," METRON, Springer;Sapienza Università di Roma, vol. 80(3), pages 343-370, December.
    10. Wei Shao & Yijun Zuo, 2020. "Computing the halfspace depth with multiple try algorithm and simulated annealing algorithm," Computational Statistics, Springer, vol. 35(1), pages 203-226, March.
    11. Yalei Yang & Hao Gao & Colin Berry & David Carrick & Aleksandra Radjenovic & Dirk Husmeier, 2022. "Classification of myocardial blood flow based on dynamic contrast‐enhanced magnetic resonance imaging using hierarchical Bayesian models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1085-1115, November.
    12. Richard G. Everitt, 2018. "Efficient importance sampling in low dimensions using affine arithmetic," Computational Statistics, Springer, vol. 33(1), pages 1-29, March.
    13. Liseo, Brunero & Parisi, Antonio, 2013. "Bayesian inference for the multivariate skew-normal model: A population Monte Carlo approach," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 125-138.
    14. Tatiana Dmitrieva & Kristin McCullough & Nader Ebrahimi, 2021. "Improved approximate Bayesian computation methods via empirical likelihood," Computational Statistics, Springer, vol. 36(2), pages 1533-1552, June.
    15. Chris J. Oates & Mark Girolami & Nicolas Chopin, 2017. "Control functionals for Monte Carlo integration," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 695-718, June.
    16. Qiyun Pan & Eunshin Byon & Young Myoung Ko & Henry Lam, 2020. "Adaptive importance sampling for extreme quantile estimation with stochastic black box computer models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(7), pages 524-547, October.
    17. Zanella, Giacomo & Bédard, Mylène & Kendall, Wilfrid S., 2017. "A Dirichlet form approach to MCMC optimal scaling," Stochastic Processes and their Applications, Elsevier, vol. 127(12), pages 4053-4082.
    18. Christian P. Robert & Gareth Roberts, 2021. "Rao–Blackwellisation in the Markov Chain Monte Carlo Era," International Statistical Review, International Statistical Institute, vol. 89(2), pages 237-249, August.
    19. Chaudhuri, Anirban & Kramer, Boris & Willcox, Karen E., 2020. "Information Reuse for Importance Sampling in Reliability-Based Design Optimization," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    20. Filippi Sarah & Barnes Chris P. & Cornebise Julien & Stumpf Michael P.H., 2013. "On optimality of kernels for approximate Bayesian computation using sequential Monte Carlo," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(1), pages 87-107, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:32:y:2017:i:1:d:10.1007_s00180-016-0643-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.