IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v36y2021i2d10.1007_s00180-020-00985-1.html
   My bibliography  Save this article

Improved approximate Bayesian computation methods via empirical likelihood

Author

Listed:
  • Tatiana Dmitrieva

    (Advocate Aurora Health)

  • Kristin McCullough

    (Grand View University)

  • Nader Ebrahimi

    (Northern Illinois University)

Abstract

Approximate Bayesian Computation (ABC) is a method of statistical inference that is used for complex models where the likelihood function is intractable or computationally difficult, but can be simulated by a computer model. As proposed by Mengersen et al. (Proc Natl Acad Sci 110(4):1321–1326, 2013), when additional information about the parameter of interest is available, empirical likelihood techniques can be used in place of model simulation. In this paper we propose an improvement to Mengersen et al. (2013) ABC via empirical likelihood algorithm through the addition of a testing procedure. We demonstrate the effectiveness of our proposed method through a nanotechnology application where we assess the reliability of nanowires. The efficiency and improved accuracy is shown through simulation analysis.

Suggested Citation

  • Tatiana Dmitrieva & Kristin McCullough & Nader Ebrahimi, 2021. "Improved approximate Bayesian computation methods via empirical likelihood," Computational Statistics, Springer, vol. 36(2), pages 1533-1552, June.
  • Handle: RePEc:spr:compst:v:36:y:2021:i:2:d:10.1007_s00180-020-00985-1
    DOI: 10.1007/s00180-020-00985-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-020-00985-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-020-00985-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jean-Marie Cornuet & Jean-Michel Marin & Antonietta Mira & Christian P. Robert, 2012. "Adaptive Multiple Importance Sampling," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 39(4), pages 798-812, December.
    2. Maxime Lenormand & Franck Jabot & Guillaume Deffuant, 2013. "Adaptive approximate Bayesian computation for complex models," Computational Statistics, Springer, vol. 28(6), pages 2777-2796, December.
    3. repec:dau:papers:123456789/5724 is not listed on IDEAS
    4. Blum, Michael G. B., 2010. "Approximate Bayesian Computation: A Nonparametric Perspective," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1178-1187.
    5. Nicole A. Lazar, 2003. "Bayesian empirical likelihood," Biometrika, Biometrika Trust, vol. 90(2), pages 319-326, June.
    6. repec:dau:papers:123456789/10690 is not listed on IDEAS
    7. Susanne M. Schennach, 2005. "Bayesian exponentially tilted empirical likelihood," Biometrika, Biometrika Trust, vol. 92(1), pages 31-46, March.
    8. Nader Ebrahimi & Kristin McCullough & Zhili Xiao, 2013. "Reliability of sensors based on nanowire networks," IISE Transactions, Taylor & Francis Journals, vol. 45(2), pages 215-228.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Yu & Graham, Daniel J. & McCoy, Emma J., 2023. "Semiparametric Bayesian doubly robust causal estimation," LSE Research Online Documents on Economics 117944, London School of Economics and Political Science, LSE Library.
    2. Jean-Pierre Florens & Anna Simoni, 2021. "Gaussian Processes and Bayesian Moment Estimation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 482-492, March.
    3. Zhichao Liu & Catherine Forbes & Heather Anderson, 2017. "Robust Bayesian exponentially tilted empirical likelihood method," Monash Econometrics and Business Statistics Working Papers 21/17, Monash University, Department of Econometrics and Business Statistics.
    4. Siddhartha Chib & Minchul Shin & Anna Simoni, 2022. "Bayesian estimation and comparison of conditional moment models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 740-764, July.
    5. Isaiah Andrews & Anna Mikusheva, 2022. "Optimal Decision Rules for Weak GMM," Econometrica, Econometric Society, vol. 90(2), pages 715-748, March.
    6. Xu, Ke-Li, 2020. "Inference of local regression in the presence of nuisance parameters," Journal of Econometrics, Elsevier, vol. 218(2), pages 532-560.
    7. Rong Tang & Yun Yang, 2022. "Bayesian inference for risk minimization via exponentially tilted empirical likelihood," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1257-1286, September.
    8. Lehmann, Bruce N., 2009. "The role of beliefs in inference for rational expectations models," Journal of Econometrics, Elsevier, vol. 150(2), pages 322-331, June.
    9. In Chang & Rahul Mukerjee, 2012. "On the approximate frequentist validity of the posterior quantiles of a parametric function: results based on empirical and related likelihoods," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 156-169, March.
    10. Siddharta Chib & Minchul Shin & Anna Simoni, 2016. "Bayesian Empirical Likelihood Estimation and Comparison of Moment Condition Models," Working Papers 2016-21, Center for Research in Economics and Statistics.
    11. F. Giummolè & V. Mameli & E. Ruli & L. Ventura, 2019. "Objective Bayesian inference with proper scoring rules," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 728-755, September.
    12. Kai-Tai Fang & Rahul Mukerjee, 2006. "Empirical-type likelihoods allowing posterior credible sets with frequentist validity: Higher-order asymptotics," Biometrika, Biometrika Trust, vol. 93(3), pages 723-733, September.
    13. Ventura, Laura & Cabras, Stefano & Racugno, Walter, 2009. "Prior Distributions From Pseudo-Likelihoods in the Presence of Nuisance Parameters," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 768-774.
    14. Sanjay Chaudhuri & Malay Ghosh, 2011. "Empirical likelihood for small area estimation," Biometrika, Biometrika Trust, vol. 98(2), pages 473-480.
    15. Rahul Mukerjee & Ling-Yau Chan, 2009. "Confidence intervals based on empirical statistics: existence of a probability matching prior and connection with frequentist Bartlett adjustability," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(2), pages 271-282, August.
    16. Chang, In Hong & Mukerjee, Rahul, 2008. "Matching posterior and frequentist cumulative distribution functions with empirical-type likelihoods in the multiparameter case," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2793-2797, November.
    17. Li, Cheng & Jiang, Wenxin, 2016. "On oracle property and asymptotic validity of Bayesian generalized method of moments," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 132-147.
    18. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    19. Giuseppe Ragusa, 2007. "Bayesian Likelihoods for Moment Condition Models," Working Papers 060714, University of California-Irvine, Department of Economics.
    20. Lin, Lu & Tan, Lin, 2008. "Proper Bayesian estimating equation based on Hilbert space method," Statistics & Probability Letters, Elsevier, vol. 78(9), pages 1119-1127, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:36:y:2021:i:2:d:10.1007_s00180-020-00985-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.