Generating MCMC proposals by randomly rotating the regular simplex
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jmva.2022.105106
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Bédard, Mylène & Douc, Randal & Moulines, Eric, 2012. "Scaling analysis of multiple-try MCMC methods," Stochastic Processes and their Applications, Elsevier, vol. 122(3), pages 758-786.
- Xin Luo & Håkon Tjelmeland, 2019. "A multiple-try Metropolis–Hastings algorithm with tailored proposals," Computational Statistics, Springer, vol. 34(3), pages 1109-1133, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
- Gagnon, Philippe & Bédard, Mylène & Desgagné, Alain, 2019. "Weak convergence and optimal tuning of the reversible jump algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 161(C), pages 32-51.
- Yang, Jun & Roberts, Gareth O. & Rosenthal, Jeffrey S., 2020. "Optimal scaling of random-walk metropolis algorithms on general target distributions," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 6094-6132.
- L. Martino & F. Louzada, 2017. "Issues in the Multiple Try Metropolis mixing," Computational Statistics, Springer, vol. 32(1), pages 239-252, March.
- Gael M. Martin & David T. Frazier & Christian P. Robert, 2022. "Computing Bayes: From Then `Til Now," Monash Econometrics and Business Statistics Working Papers 14/22, Monash University, Department of Econometrics and Business Statistics.
- Zanella, Giacomo & Bédard, Mylène & Kendall, Wilfrid S., 2017. "A Dirichlet form approach to MCMC optimal scaling," Stochastic Processes and their Applications, Elsevier, vol. 127(12), pages 4053-4082.
More about this item
Keywords
Haar measure; Markov chain Monte Carlo; Orthogonal group; Parallel MCMC;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:194:y:2023:i:c:s0047259x22000975. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.