IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v130y2020i10p6094-6132.html
   My bibliography  Save this article

Optimal scaling of random-walk metropolis algorithms on general target distributions

Author

Listed:
  • Yang, Jun
  • Roberts, Gareth O.
  • Rosenthal, Jeffrey S.

Abstract

One main limitation of the existing optimal scaling results for Metropolis–Hastings algorithms is that the assumptions on the target distribution are unrealistic. In this paper, we consider optimal scaling of random-walk Metropolis algorithms on general target distributions in high dimensions arising from practical MCMC models from Bayesian statistics. For optimal scaling by maximizing expected squared jumping distance (ESJD), we show the asymptotically optimal acceptance rate 0.234 can be obtained under general realistic sufficient conditions on the target distribution. The new sufficient conditions are easy to be verified and may hold for some general classes of MCMC models arising from Bayesian statistics applications, which substantially generalize the product i.i.d. condition required in most existing literature of optimal scaling. Furthermore, we show one-dimensional diffusion limits can be obtained under slightly stronger conditions, which still allow dependent coordinates of the target distribution. We also connect the new diffusion limit results to complexity bounds of Metropolis algorithms in high dimensions.

Suggested Citation

  • Yang, Jun & Roberts, Gareth O. & Rosenthal, Jeffrey S., 2020. "Optimal scaling of random-walk metropolis algorithms on general target distributions," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 6094-6132.
  • Handle: RePEc:eee:spapps:v:130:y:2020:i:10:p:6094-6132
    DOI: 10.1016/j.spa.2020.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414919306982
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2020.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ole F. Christensen & Gareth O. Roberts & Jeffrey S. Rosenthal, 2005. "Scaling limits for the transient phase of local Metropolis–Hastings algorithms," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 253-268, April.
    2. Dalalyan, Arnak S. & Karagulyan, Avetik, 2019. "User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5278-5311.
    3. Roberts, G. O. & Tweedie, R. L., 1999. "Bounds on regeneration times and convergence rates for Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 80(2), pages 211-229, April.
    4. Arnak S. Dalalyan, 2017. "Theoretical guarantees for approximate sampling from smooth and log-concave densities," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 651-676, June.
    5. Peter Neal & Gareth Roberts, 2008. "Optimal Scaling for Random Walk Metropolis on Spherically Constrained Target Densities," Methodology and Computing in Applied Probability, Springer, vol. 10(2), pages 277-297, June.
    6. Bédard, Mylène & Douc, Randal & Moulines, Eric, 2012. "Scaling analysis of multiple-try MCMC methods," Stochastic Processes and their Applications, Elsevier, vol. 122(3), pages 758-786.
    7. Gareth O. Roberts & Jeffrey S. Rosenthal, 1998. "Optimal scaling of discrete approximations to Langevin diffusions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(1), pages 255-268.
    8. Zanella, Giacomo & Bédard, Mylène & Kendall, Wilfrid S., 2017. "A Dirichlet form approach to MCMC optimal scaling," Stochastic Processes and their Applications, Elsevier, vol. 127(12), pages 4053-4082.
    9. Peter Neal & Gareth Roberts, 2011. "Optimal Scaling of Random Walk Metropolis Algorithms with Non-Gaussian Proposals," Methodology and Computing in Applied Probability, Springer, vol. 13(3), pages 583-601, September.
    10. Roberts, G. O. & Smith, A. F. M., 1994. "Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms," Stochastic Processes and their Applications, Elsevier, vol. 49(2), pages 207-216, February.
    11. Breyer, L. A. & Roberts, G. O., 2000. "From metropolis to diffusions: Gibbs states and optimal scaling," Stochastic Processes and their Applications, Elsevier, vol. 90(2), pages 181-206, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zanella, Giacomo & Bédard, Mylène & Kendall, Wilfrid S., 2017. "A Dirichlet form approach to MCMC optimal scaling," Stochastic Processes and their Applications, Elsevier, vol. 127(12), pages 4053-4082.
    2. Kamatani, Kengo, 2020. "Random walk Metropolis algorithm in high dimension with non-Gaussian target distributions," Stochastic Processes and their Applications, Elsevier, vol. 130(1), pages 297-327.
    3. Jure Vogrinc & Samuel Livingstone & Giacomo Zanella, 2023. "Optimal design of the Barker proposal and other locally balanced Metropolis–Hastings algorithms," Biometrika, Biometrika Trust, vol. 110(3), pages 579-595.
    4. Dalalyan, Arnak S. & Karagulyan, Avetik, 2019. "User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5278-5311.
    5. Peter Neal & Gareth Roberts, 2011. "Optimal Scaling of Random Walk Metropolis Algorithms with Non-Gaussian Proposals," Methodology and Computing in Applied Probability, Springer, vol. 13(3), pages 583-601, September.
    6. Peter Neal & Gareth Roberts, 2008. "Optimal Scaling for Random Walk Metropolis on Spherically Constrained Target Densities," Methodology and Computing in Applied Probability, Springer, vol. 10(2), pages 277-297, June.
    7. Samuel Livingstone & Giacomo Zanella, 2022. "The Barker proposal: Combining robustness and efficiency in gradient‐based MCMC," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 496-523, April.
    8. Crespo, Marelys & Gadat, Sébastien & Gendre, Xavier, 2023. "Stochastic Langevin Monte Carlo for (weakly) log-concave posterior distributions," TSE Working Papers 23-1398, Toulouse School of Economics (TSE).
    9. Mattingly, J. C. & Stuart, A. M. & Higham, D. J., 2002. "Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise," Stochastic Processes and their Applications, Elsevier, vol. 101(2), pages 185-232, October.
    10. Quan Zhou & Jun Yang & Dootika Vats & Gareth O. Roberts & Jeffrey S. Rosenthal, 2022. "Dimension‐free mixing for high‐dimensional Bayesian variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1751-1784, November.
    11. O. F. Christensen & J. Møller & R. P. Waagepetersen, 2001. "Geometric Ergodicity of Metropolis-Hastings Algorithms for Conditional Simulation in Generalized Linear Mixed Models," Methodology and Computing in Applied Probability, Springer, vol. 3(3), pages 309-327, September.
    12. Chau, Huy N. & Rásonyi, Miklós, 2022. "Stochastic Gradient Hamiltonian Monte Carlo for non-convex learning," Stochastic Processes and their Applications, Elsevier, vol. 149(C), pages 341-368.
    13. Tsionas, Mike G., 2021. "Bayesian forecasting with the structural damped trend model," International Journal of Production Economics, Elsevier, vol. 234(C).
    14. Tsionas, Mike G., 2019. "Multi-objective optimization using statistical models," European Journal of Operational Research, Elsevier, vol. 276(1), pages 364-378.
    15. Gordon, Stephen & St-Amour, Pascal, 1997. "Asset Prices with Contingent Preferences," Cahiers de recherche 9712, Université Laval - Département d'économique, revised 08 Jun 1998.
    16. Holbrook, Andrew J., 2023. "Generating MCMC proposals by randomly rotating the regular simplex," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    17. Efthymios G. Tsionas, 2006. "Inference in dynamic stochastic frontier models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 669-676, July.
    18. Tengyuan Liang & Weijie J. Su, 2019. "Statistical inference for the population landscape via moment‐adjusted stochastic gradients," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 431-456, April.
    19. Fort, G. & Moulines, E., 2003. "Polynomial ergodicity of Markov transition kernels," Stochastic Processes and their Applications, Elsevier, vol. 103(1), pages 57-99, January.
    20. Delis, Manthos D. & Tsionas, Mike G., 2018. "Measuring management practices," International Journal of Production Economics, Elsevier, vol. 199(C), pages 65-77.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:130:y:2020:i:10:p:6094-6132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.