IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v50y2023i3p1298-1324.html
   My bibliography  Save this article

Daisee: Adaptive importance sampling by balancing exploration and exploitation

Author

Listed:
  • Xiaoyu Lu
  • Tom Rainforth
  • Yee Whye Teh

Abstract

We study adaptive importance sampling (AIS) as an online learning problem and argue for the importance of the trade‐off between exploration and exploitation in this adaptation. Borrowing ideas from the online learning literature, we propose Daisee, a partition‐based AIS algorithm. We further introduce a notion of regret for AIS and show that Daisee has 𝒪(T(logT)34) cumulative pseudo‐regret, where T$$ T $$ is the number of iterations. We then extend Daisee to adaptively learn a hierarchical partitioning of the sample space for more efficient sampling and confirm the performance of both algorithms empirically.

Suggested Citation

  • Xiaoyu Lu & Tom Rainforth & Yee Whye Teh, 2023. "Daisee: Adaptive importance sampling by balancing exploration and exploitation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(3), pages 1298-1324, September.
  • Handle: RePEc:bla:scjsta:v:50:y:2023:i:3:p:1298-1324
    DOI: 10.1111/sjos.12637
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12637
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12637?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jean-Marie Cornuet & Jean-Michel Marin & Antonietta Mira & Christian P. Robert, 2012. "Adaptive Multiple Importance Sampling," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 39(4), pages 798-812, December.
    2. repec:dau:papers:123456789/6072 is not listed on IDEAS
    3. repec:dau:papers:123456789/10690 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shields, Michael D., 2018. "Adaptive Monte Carlo analysis for strongly nonlinear stochastic systems," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 207-224.
    2. Yalei Yang & Hao Gao & Colin Berry & David Carrick & Aleksandra Radjenovic & Dirk Husmeier, 2022. "Classification of myocardial blood flow based on dynamic contrast‐enhanced magnetic resonance imaging using hierarchical Bayesian models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1085-1115, November.
    3. Liseo, Brunero & Parisi, Antonio, 2013. "Bayesian inference for the multivariate skew-normal model: A population Monte Carlo approach," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 125-138.
    4. L. Martino & F. Louzada, 2017. "Issues in the Multiple Try Metropolis mixing," Computational Statistics, Springer, vol. 32(1), pages 239-252, March.
    5. Tatiana Dmitrieva & Kristin McCullough & Nader Ebrahimi, 2021. "Improved approximate Bayesian computation methods via empirical likelihood," Computational Statistics, Springer, vol. 36(2), pages 1533-1552, June.
    6. Chris J. Oates & Mark Girolami & Nicolas Chopin, 2017. "Control functionals for Monte Carlo integration," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 695-718, June.
    7. Qiyun Pan & Eunshin Byon & Young Myoung Ko & Henry Lam, 2020. "Adaptive importance sampling for extreme quantile estimation with stochastic black box computer models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(7), pages 524-547, October.
    8. Christian P. Robert & Gareth Roberts, 2021. "Rao–Blackwellisation in the Markov Chain Monte Carlo Era," International Statistical Review, International Statistical Institute, vol. 89(2), pages 237-249, August.
    9. Chaudhuri, Anirban & Kramer, Boris & Willcox, Karen E., 2020. "Information Reuse for Importance Sampling in Reliability-Based Design Optimization," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    10. Filippi Sarah & Barnes Chris P. & Cornebise Julien & Stumpf Michael P.H., 2013. "On optimality of kernels for approximate Bayesian computation using sequential Monte Carlo," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(1), pages 87-107, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:50:y:2023:i:3:p:1298-1324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.