IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v161y2019icp32-51.html
   My bibliography  Save this article

Weak convergence and optimal tuning of the reversible jump algorithm

Author

Listed:
  • Gagnon, Philippe
  • Bédard, Mylène
  • Desgagné, Alain

Abstract

The reversible jump algorithm is a useful Markov chain Monte Carlo method introduced by Green (1995) that allows switches between subspaces of differing dimensionality, and therefore, model selection. Although this method is now increasingly used in key areas (e.g. biology and finance), it remains a challenge to implement it. In this paper, we focus on a simple sampling context in order to obtain theoretical results that lead to an optimal tuning procedure for the considered reversible jump algorithm, and consequently, to easy implementation. The key result is the weak convergence of the sequence of stochastic processes engendered by the algorithm. It represents the main contribution of this paper as it is, to our knowledge, the first weak convergence result for the reversible jump algorithm. The sampler updating the parameters according to a random walk, this result allows to retrieve the well-known 0.234 rule for finding the optimal scaling. It also leads to an answer to the question: “with what probability should a parameter update be proposed comparatively to a model switch at each iteration?”

Suggested Citation

  • Gagnon, Philippe & Bédard, Mylène & Desgagné, Alain, 2019. "Weak convergence and optimal tuning of the reversible jump algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 161(C), pages 32-51.
  • Handle: RePEc:eee:matcom:v:161:y:2019:i:c:p:32-51
    DOI: 10.1016/j.matcom.2018.06.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475418301526
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2018.06.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. P. Brooks & P. Giudici & G. O. Roberts, 2003. "Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 3-39, January.
    2. Al-Awadhi, Fahimah & Hurn, Merrilee & Jennison, Christopher, 2004. "Improving the acceptance rate of reversible jump MCMC proposals," Statistics & Probability Letters, Elsevier, vol. 69(2), pages 189-198, August.
    3. Bédard, Mylène & Douc, Randal & Moulines, Eric, 2012. "Scaling analysis of multiple-try MCMC methods," Stochastic Processes and their Applications, Elsevier, vol. 122(3), pages 758-786.
    4. Sylvia. Richardson & Peter J. Green, 1997. "On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(4), pages 731-792.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Langnan & Luo, Jiawen & Liu, Hao, 2013. "The determinants of liquidity with G-RJMCMC-VS model: Evidence from China," Economic Modelling, Elsevier, vol. 35(C), pages 192-198.
    2. David I. Hastie & Peter J. Green, 2012. "Model choice using reversible jump Markov chain Monte Carlo," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 66(3), pages 309-338, August.
    3. Meyer-Gohde, Alexander & Neuhoff, Daniel, 2015. "Generalized exogenous processes in DSGE: A Bayesian approach," SFB 649 Discussion Papers 2015-014, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    4. Rosineide Fernando da Paz & Jorge Luis Bazán & Luis Aparecido Milan, 2017. "Bayesian estimation for a mixture of simplex distributions with an unknown number of components: HDI analysis in Brazil," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(9), pages 1630-1643, July.
    5. McVinish, R. & Mengersen, K., 2008. "Semiparametric Bayesian circular statistics," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4722-4730, June.
    6. McGrory, C.A. & Pettitt, A.N. & Faddy, M.J., 2009. "A fully Bayesian approach to inference for Coxian phase-type distributions with covariate dependent mean," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4311-4321, October.
    7. Oedekoven, C.S. & King, R. & Buckland, S.T. & Mackenzie, M.L. & Evans, K.O. & Burger, L.W., 2016. "Using hierarchical centering to facilitate a reversible jump MCMC algorithm for random effects models," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 79-90.
    8. Oscar M Rueda & Ramón Díaz-Uriarte, 2007. "Flexible and Accurate Detection of Genomic Copy-Number Changes from aCGH," PLOS Computational Biology, Public Library of Science, vol. 3(6), pages 1-8, June.
    9. Ho, Remus K.W. & Hu, Inchi, 2008. "Flexible modelling of random effects in linear mixed models--A Bayesian approach," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1347-1361, January.
    10. Riccardo (Jack) Lucchetti & Luca Pedini, 2020. "ParMA: Parallelised Bayesian Model Averaging for Generalised Linear Models," Working Papers 2020:28, Department of Economics, University of Venice "Ca' Foscari".
    11. Leonardo Oliveira Martins & Hirohisa Kishino, 2010. "Distribution of distances between topologies and its effect on detection of phylogenetic recombination," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(1), pages 145-159, February.
    12. Shuang Zhang & Xingdong Feng, 2022. "Distributed identification of heterogeneous treatment effects," Computational Statistics, Springer, vol. 37(1), pages 57-89, March.
    13. N. T. Longford & Pierpaolo D'Urso, 2011. "Mixture models with an improper component," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(11), pages 2511-2521, January.
    14. Holbrook, Andrew J., 2023. "Generating MCMC proposals by randomly rotating the regular simplex," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    15. Conti, Gabriella & Frühwirth-Schnatter, Sylvia & Heckman, James J. & Piatek, Rémi, 2014. "Bayesian exploratory factor analysis," Journal of Econometrics, Elsevier, vol. 183(1), pages 31-57.
    16. Zhengyi Zhou & David S. Matteson & Dawn B. Woodard & Shane G. Henderson & Athanasios C. Micheas, 2015. "A Spatio-Temporal Point Process Model for Ambulance Demand," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 6-15, March.
    17. Francisco Richter & Bart Haegeman & Rampal S. Etienne & Ernst C. Wit, 2020. "Introducing a general class of species diversification models for phylogenetic trees," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(3), pages 261-274, August.
    18. Nalini Ravishanker & Dipak K. Dey, 2000. "Multivariate Survival Models with a Mixture of Positive Stable Frailties," Methodology and Computing in Applied Probability, Springer, vol. 2(3), pages 293-308, September.
    19. Yasutomo Murasawa, 2020. "Measuring public inflation perceptions and expectations in the UK," Empirical Economics, Springer, vol. 59(1), pages 315-344, July.
    20. Minjung Kyung & Ju-Hyun Park & Ji Yeh Choi, 2022. "Bayesian Mixture Model of Extended Redundancy Analysis," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 946-966, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:161:y:2019:i:c:p:32-51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.