IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v33y2018i1d10.1007_s00180-017-0729-z.html
   My bibliography  Save this article

Efficient importance sampling in low dimensions using affine arithmetic

Author

Listed:
  • Richard G. Everitt

    (Whiteknights)

Abstract

Despite the development of sophisticated techniques such as sequential Monte Carlo (Del Moral et al. in J R Stat Soc Ser B 68(3):411–436, 2006), importance sampling (IS) remains an important Monte Carlo method for low dimensional target distributions (Chopin and Ridgway in Leave Pima Indians alone: binary regression as a benchmark for Bayesian computation, 32:64–87, 2017). This paper describes a new technique for constructing proposal distributions for IS, using affine arithmetic (de Figueiredo and Stolfi in Numer Algorithms 37(1–4):147–158, 2004). This work builds on the Moore rejection sampler (Sainudiin in Machine interval experiments, Cornell University, Ithaca, 2005; Sainudiin and York in Algorithms Mol Biol 4(1):1, 2009) to which we provide a comparison.

Suggested Citation

  • Richard G. Everitt, 2018. "Efficient importance sampling in low dimensions using affine arithmetic," Computational Statistics, Springer, vol. 33(1), pages 1-29, March.
  • Handle: RePEc:spr:compst:v:33:y:2018:i:1:d:10.1007_s00180-017-0729-z
    DOI: 10.1007/s00180-017-0729-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-017-0729-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-017-0729-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pierre Del Moral & Arnaud Doucet & Ajay Jasra, 2006. "Sequential Monte Carlo samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 411-436, June.
    2. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
    3. Maxime Lenormand & Franck Jabot & Guillaume Deffuant, 2013. "Adaptive approximate Bayesian computation for complex models," Computational Statistics, Springer, vol. 28(6), pages 2777-2796, December.
    4. Luca Martino & Jesse Read, 2013. "On the flexibility of the design of multiple try Metropolis schemes," Computational Statistics, Springer, vol. 28(6), pages 2797-2823, December.
    5. W. R. Gilks & N. G. Best & K. K. C. Tan, 1995. "Adaptive Rejection Metropolis Sampling Within Gibbs Sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 44(4), pages 455-472, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arnaud Dufays, 2016. "Evolutionary Sequential Monte Carlo Samplers for Change-Point Models," Econometrics, MDPI, vol. 4(1), pages 1-33, March.
    2. Gabriele Fiorentini & Enrique Sentana & Neil Shephard, 2004. "Likelihood-Based Estimation of Latent Generalized ARCH Structures," Econometrica, Econometric Society, vol. 72(5), pages 1481-1517, September.
    3. Edward Herbst & Frank Schorfheide, 2014. "Sequential Monte Carlo Sampling For Dsge Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1073-1098, November.
    4. Geweke, John & Durham, Garland, 2019. "Sequentially adaptive Bayesian learning algorithms for inference and optimization," Journal of Econometrics, Elsevier, vol. 210(1), pages 4-25.
    5. Charles Bos & Neil Shephard, 2006. "Inference for Adaptive Time Series Models: Stochastic Volatility and Conditionally Gaussian State Space Form," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 219-244.
    6. Gareth W. Peters & Rodrigo S. Targino & Mario V. Wüthrich, 2017. "Bayesian Modelling, Monte Carlo Sampling and Capital Allocation of Insurance Risks," Risks, MDPI, vol. 5(4), pages 1-51, September.
    7. Bin Liu, 2017. "Posterior exploration based sequential Monte Carlo for global optimization," Journal of Global Optimization, Springer, vol. 69(4), pages 847-868, December.
    8. Mark Bognanni & Edward P. Herbst, 2014. "Estimating (Markov-Switching) VAR Models without Gibbs Sampling: A Sequential Monte Carlo Approach," Working Papers (Old Series) 1427, Federal Reserve Bank of Cleveland.
    9. Arnaud Dufays, 2014. "On the conjugacy of off-line and on-line Sequential Monte Carlo Samplers," Working Paper Research 263, National Bank of Belgium.
    10. Leluc, Rémi & Portier, François & Segers, Johan & Zhuman, Aigerim, 2022. "A Quadrature Rule combining Control Variates and Adaptive Importance Sampling," LIDAM Discussion Papers ISBA 2022018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Pitt, Michael K. & Silva, Ralph dos Santos & Giordani, Paolo & Kohn, Robert, 2012. "On some properties of Markov chain Monte Carlo simulation methods based on the particle filter," Journal of Econometrics, Elsevier, vol. 171(2), pages 134-151.
    12. Drew Creal, 2012. "A Survey of Sequential Monte Carlo Methods for Economics and Finance," Econometric Reviews, Taylor & Francis Journals, vol. 31(3), pages 245-296.
    13. Markku Lanne & Jani Luoto, 2015. "Estimation of DSGE Models under Diffuse Priors and Data-Driven Identification Constraints," CREATES Research Papers 2015-37, Department of Economics and Business Economics, Aarhus University.
    14. Charles Bos & Neil Shephard, 2006. "Inference for Adaptive Time Series Models: Stochastic Volatility and Conditionally Gaussian State Space Form," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 219-244.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:33:y:2018:i:1:d:10.1007_s00180-017-0729-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.