IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v20y2023i1d10.1007_s10287-023-00446-2.html
   My bibliography  Save this article

Problem-driven scenario clustering in stochastic optimization

Author

Listed:
  • Julien Keutchayan

    (McGill University)

  • Janosch Ortmann

    (UQAM
    Centre de recherches mathématiques
    GERAD)

  • Walter Rei

    (UQAM
    CIRRELT)

Abstract

In stochastic optimisation, the large number of scenarios required to faithfully represent the underlying uncertainty is often a barrier to finding efficient numerical solutions. This motivates the scenario reduction problem: by finding a smaller subset of scenarios, reduce the numerical complexity while keeping the error at an acceptable level. In this paper we propose a novel and computationally efficient methodology to tackle the scenario reduction problem for two-stage problems when the error to be minimised is the implementation error, i.e. the error incurred by implementing the solution of the reduced problem in the original problem. Specifically, we develop a problem-driven scenario clustering method that produces a partition of the scenario set. Each cluster contains a representative scenario that best reflects the optimal value of the objective function in each cluster of the partition to be identified. We demonstrate the efficiency of our method by applying it to two challenging two-stage stochastic combinatorial optimization problems: the two-stage stochastic network design problem and the two-stage facility location problem. When compared to alternative clustering methods and Monte Carlo sampling, our method is shown to clearly outperform all other methods.

Suggested Citation

  • Julien Keutchayan & Janosch Ortmann & Walter Rei, 2023. "Problem-driven scenario clustering in stochastic optimization," Computational Management Science, Springer, vol. 20(1), pages 1-33, December.
  • Handle: RePEc:spr:comgts:v:20:y:2023:i:1:d:10.1007_s10287-023-00446-2
    DOI: 10.1007/s10287-023-00446-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10287-023-00446-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10287-023-00446-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Opher Baron & Oded Berman & Dmitry Krass, 2008. "Facility Location with Stochastic Demand and Constraints on Waiting Time," Manufacturing & Service Operations Management, INFORMS, vol. 10(3), pages 484-505, August.
    2. H. Heitsch & H. Leövey & W. Römisch, 2016. "Are Quasi-Monte Carlo algorithms efficient for two-stage stochastic programs?," Computational Optimization and Applications, Springer, vol. 65(3), pages 567-603, December.
    3. Julia L. Higle & Suvrajeet Sen, 1991. "Stochastic Decomposition: An Algorithm for Two-Stage Linear Programs with Recourse," Mathematics of Operations Research, INFORMS, vol. 16(3), pages 650-669, August.
    4. Georg Pflug & Alois Pichler, 2015. "Dynamic generation of scenario trees," Computational Optimization and Applications, Springer, vol. 62(3), pages 641-668, December.
    5. Vit Prochazka & Stein W. Wallace, 2020. "Scenario tree construction driven by heuristic solutions of the optimization problem," Computational Management Science, Springer, vol. 17(2), pages 277-307, June.
    6. Bieniek, Milena, 2015. "A note on the facility location problem with stochastic demands," Omega, Elsevier, vol. 55(C), pages 53-60.
    7. Kjetil Høyland & Stein W. Wallace, 2001. "Generating Scenario Trees for Multistage Decision Problems," Management Science, INFORMS, vol. 47(2), pages 295-307, February.
    8. Michael Chen & Sanjay Mehrotra & Dávid Papp, 2015. "Scenario generation for stochastic optimization problems via the sparse grid method," Computational Optimization and Applications, Springer, vol. 62(3), pages 669-692, December.
    9. Yonghan Feng & Sarah Ryan, 2016. "Solution sensitivity-based scenario reduction for stochastic unit commitment," Computational Management Science, Springer, vol. 13(1), pages 29-62, January.
    10. René Henrion & Christian Küchler & Werner Römisch, 2009. "Scenario reduction in stochastic programming with respect to discrepancy distances," Computational Optimization and Applications, Springer, vol. 43(1), pages 67-93, May.
    11. Morten Riis & Kim Allan Andersen, 2002. "Capacitated Network Design with Uncertain Demand," INFORMS Journal on Computing, INFORMS, vol. 14(3), pages 247-260, August.
    12. Sun, M. & Teng, F. & Konstantelos, I. & Strbac, G., 2018. "An objective-based scenario selection method for transmission network expansion planning with multivariate stochasticity in load and renewable energy sources," Energy, Elsevier, vol. 145(C), pages 871-885.
    13. Stein Wallace, 2010. "Stochastic programming and the option of doing it differently," Annals of Operations Research, Springer, vol. 177(1), pages 3-8, June.
    14. Julien Keutchayan & Michel Gendreau & Antoine Saucier, 2017. "Quality evaluation of scenario-tree generation methods for solving stochastic programming problems," Computational Management Science, Springer, vol. 14(3), pages 333-365, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oscar Danilo Montoya & Luis Fernando Grisales-Noreña & Walter Gil-González, 2024. "Multi-Objective Battery Coordination in Distribution Networks to Simultaneously Minimize CO 2 Emissions and Energy Losses," Sustainability, MDPI, vol. 16(5), pages 1-19, February.
    2. Narum, Benjamin S. & Fairbrother, Jamie & Wallace, Stein W., 2024. "Problem-based scenario generation by decomposing output distributions," European Journal of Operational Research, Elsevier, vol. 318(1), pages 154-166.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Zhang & Kai Wang & Alexandre Jacquillat & Shuaian Wang, 2023. "Optimized Scenario Reduction: Solving Large-Scale Stochastic Programs with Quality Guarantees," INFORMS Journal on Computing, INFORMS, vol. 35(4), pages 886-908, July.
    2. Julien Keutchayan & Michel Gendreau & Antoine Saucier, 2017. "Quality evaluation of scenario-tree generation methods for solving stochastic programming problems," Computational Management Science, Springer, vol. 14(3), pages 333-365, July.
    3. Faezeh Akhavizadegan & Lizhi Wang & James McCalley, 2020. "Scenario Selection for Iterative Stochastic Transmission Expansion Planning," Energies, MDPI, vol. 13(5), pages 1-18, March.
    4. D. Kuhn, 2009. "Convergent Bounds for Stochastic Programs with Expected Value Constraints," Journal of Optimization Theory and Applications, Springer, vol. 141(3), pages 597-618, June.
    5. Li, Jinghua & Zhou, Jiasheng & Chen, Bo, 2020. "Review of wind power scenario generation methods for optimal operation of renewable energy systems," Applied Energy, Elsevier, vol. 280(C).
    6. Vit Prochazka & Stein W. Wallace, 2020. "Scenario tree construction driven by heuristic solutions of the optimization problem," Computational Management Science, Springer, vol. 17(2), pages 277-307, June.
    7. Weiguo Zhang & Xiaolei He, 2022. "A New Scenario Reduction Method Based on Higher-Order Moments," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 1903-1918, July.
    8. Ksciuk, Jana & Kuhlemann, Stefan & Tierney, Kevin & Koberstein, Achim, 2023. "Uncertainty in maritime ship routing and scheduling: A Literature review," European Journal of Operational Research, Elsevier, vol. 308(2), pages 499-524.
    9. Teodor Gabriel Crainic & Fausto Errico & Walter Rei & Nicoletta Ricciardi, 2016. "Modeling Demand Uncertainty in Two-Tier City Logistics Tactical Planning," Transportation Science, INFORMS, vol. 50(2), pages 559-578, May.
    10. Narum, Benjamin S. & Fairbrother, Jamie & Wallace, Stein W., 2024. "Problem-based scenario generation by decomposing output distributions," European Journal of Operational Research, Elsevier, vol. 318(1), pages 154-166.
    11. Warren B. Powell & Abraham George & Hugo Simão & Warren Scott & Alan Lamont & Jeffrey Stewart, 2012. "SMART: A Stochastic Multiscale Model for the Analysis of Energy Resources, Technology, and Policy," INFORMS Journal on Computing, INFORMS, vol. 24(4), pages 665-682, November.
    12. Zhe Yan & Zhiping Chen & Giorgio Consigli & Jia Liu & Ming Jin, 2020. "A copula-based scenario tree generation algorithm for multiperiod portfolio selection problems," Annals of Operations Research, Springer, vol. 292(2), pages 849-881, September.
    13. Torres-Rincón, Samuel & Sánchez-Silva, Mauricio & Bastidas-Arteaga, Emilio, 2021. "A multistage stochastic program for the design and management of flexible infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    14. Séguin, Sara & Fleten, Stein-Erik & Côté, Pascal & Pichler, Alois & Audet, Charles, 2017. "Stochastic short-term hydropower planning with inflow scenario trees," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1156-1168.
    15. Gaivoronski, Alexei A. & Stella, Fabio, 2003. "On-line portfolio selection using stochastic programming," Journal of Economic Dynamics and Control, Elsevier, vol. 27(6), pages 1013-1043, April.
    16. Xiaolei He & Weiguo Zhang, 2024. "Vine copula‐based scenario tree generation approaches for portfolio optimization," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1936-1955, September.
    17. Owadally, Iqbal & Jang, Chul & Clare, Andrew, 2021. "Optimal investment for a retirement plan with deferred annuities," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 51-62.
    18. Liu, Pei-chen Barry & Hansen, Mark & Mukherjee, Avijit, 2008. "Scenario-based air traffic flow management: From theory to practice," Transportation Research Part B: Methodological, Elsevier, vol. 42(7-8), pages 685-702, August.
    19. M. Jenabi & S. M. T. Fatemi Ghomi & S. A. Torabi & Moeen Sammak Jalali, 2022. "An accelerated Benders decomposition algorithm for stochastic power system expansion planning using sample average approximation," OPSEARCH, Springer;Operational Research Society of India, vol. 59(4), pages 1304-1336, December.
    20. Gulpinar, Nalan & Rustem, Berc & Settergren, Reuben, 2004. "Simulation and optimization approaches to scenario tree generation," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1291-1315, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:20:y:2023:i:1:d:10.1007_s10287-023-00446-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.