IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v43y2009i1p67-93.html
   My bibliography  Save this article

Scenario reduction in stochastic programming with respect to discrepancy distances

Author

Listed:
  • René Henrion
  • Christian Küchler
  • Werner Römisch

Abstract

No abstract is available for this item.

Suggested Citation

  • René Henrion & Christian Küchler & Werner Römisch, 2009. "Scenario reduction in stochastic programming with respect to discrepancy distances," Computational Optimization and Applications, Springer, vol. 43(1), pages 67-93, May.
  • Handle: RePEc:spr:coopap:v:43:y:2009:i:1:p:67-93
    DOI: 10.1007/s10589-007-9123-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-007-9123-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-007-9123-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Svetlozar T. Rachev & Werner Römisch, 2002. "Quantitative Stability in Stochastic Programming: The Method of Probability Metrics," Mathematics of Operations Research, INFORMS, vol. 27(4), pages 792-818, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghavamifar, Ali & Makui, Ahmad & Taleizadeh, Ata Allah, 2018. "Designing a resilient competitive supply chain network under disruption risks: A real-world application," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 87-109.
    2. Yin, S. & Wang, J. & Li, Z. & Fang, X., 2021. "State-of-the-art short-term electricity market operation with solar generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    3. Julien Keutchayan & Janosch Ortmann & Walter Rei, 2023. "Problem-driven scenario clustering in stochastic optimization," Computational Management Science, Springer, vol. 20(1), pages 1-33, December.
    4. Weiguo Zhang & Xiaolei He, 2022. "A New Scenario Reduction Method Based on Higher-Order Moments," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 1903-1918, July.
    5. Mínguez, R. & van Ackooij, W. & García-Bertrand, R., 2021. "Constraint generation for risk averse two-stage stochastic programs," European Journal of Operational Research, Elsevier, vol. 288(1), pages 194-206.
    6. Patrizia Beraldi & Maria Bruni, 2014. "A clustering approach for scenario tree reduction: an application to a stochastic programming portfolio optimization problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 934-949, October.
    7. Slama, Ilhem & Ben-Ammar, Oussama & Thevenin, Simon & Dolgui, Alexandre & Masmoudi, Faouzi, 2022. "Stochastic program for disassembly lot-sizing under uncertain component refurbishing lead times," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1183-1198.
    8. Yonghan Feng & Sarah Ryan, 2016. "Solution sensitivity-based scenario reduction for stochastic unit commitment," Computational Management Science, Springer, vol. 13(1), pages 29-62, January.
    9. Florian Ziel, 2020. "The energy distance for ensemble and scenario reduction," Papers 2005.14670, arXiv.org, revised Oct 2020.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongchao Liu & Huifu Xu & Jane J. Ye, 2011. "Penalized Sample Average Approximation Methods for Stochastic Mathematical Programs with Complementarity Constraints," Mathematics of Operations Research, INFORMS, vol. 36(4), pages 670-694, November.
    2. Soonhui Lee & Tito Homem-de-Mello & Anton Kleywegt, 2012. "Newsvendor-type models with decision-dependent uncertainty," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 76(2), pages 189-221, October.
    3. D. Kuhn, 2009. "Convergent Bounds for Stochastic Programs with Expected Value Constraints," Journal of Optimization Theory and Applications, Springer, vol. 141(3), pages 597-618, June.
    4. Alexander Engau, 2017. "Proper Efficiency and Tradeoffs in Multiple Criteria and Stochastic Optimization," Mathematics of Operations Research, INFORMS, vol. 42(1), pages 119-134, January.
    5. Francesca Maggioni & Matteo Cagnolari & Luca Bertazzi, 2019. "The value of the right distribution in stochastic programming with application to a Newsvendor problem," Computational Management Science, Springer, vol. 16(4), pages 739-758, October.
    6. Steffen Rebennack, 2022. "Data-driven stochastic optimization for distributional ambiguity with integrated confidence region," Journal of Global Optimization, Springer, vol. 84(2), pages 255-293, October.
    7. Vlasta Kaňková, 2013. "Risk Measures in Optimization Problems via Empirical Estimates," Czech Economic Review, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, vol. 7(3), pages 162-177, November.
    8. Yongchao Liu & Huifu Xu & Gui-Hua Lin, 2012. "Stability Analysis of One Stage Stochastic Mathematical Programs with Complementarity Constraints," Journal of Optimization Theory and Applications, Springer, vol. 152(2), pages 537-555, February.
    9. Qingsong Duan & Mengwei Xu & Shaoyan Guo & Liwei Zhang, 2018. "Quantitative Stability of Two-Stage Linear Second-Order Conic Stochastic Programs with Full Random Recourse," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(05), pages 1-24, October.
    10. Zhiping Chen & Youpan Han, 2012. "Quantitative stability of mixed-integer two-stage quadratic stochastic programs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 75(2), pages 149-163, April.
    11. Ronald Hochreiter & Georg Pflug, 2007. "Financial scenario generation for stochastic multi-stage decision processes as facility location problems," Annals of Operations Research, Springer, vol. 152(1), pages 257-272, July.
    12. Zhiping Chen & He Hu & Jie Jiang, 2022. "Convergence Analysis on Data-Driven Fortet-Mourier Metrics with Applications in Stochastic Optimization," Sustainability, MDPI, vol. 14(8), pages 1-29, April.
    13. Bita Analui & Georg Pflug, 2014. "On distributionally robust multiperiod stochastic optimization," Computational Management Science, Springer, vol. 11(3), pages 197-220, July.
    14. Andreas Eichhorn & Werner Römisch, 2007. "Stochastic Integer Programming: Limit Theorems and Confidence Intervals," Mathematics of Operations Research, INFORMS, vol. 32(1), pages 118-135, February.
    15. Peymankar, Mahboobeh & Davari, Morteza & Ranjbar, Mohammad, 2021. "Maximizing the expected net present value in a project with uncertain cash flows," European Journal of Operational Research, Elsevier, vol. 294(2), pages 442-452.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:43:y:2009:i:1:p:67-93. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.