IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v47y2001i2p295-307.html
   My bibliography  Save this article

Generating Scenario Trees for Multistage Decision Problems

Author

Listed:
  • Kjetil Høyland

    (Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology, N-7491 Trondheim, Norway)

  • Stein W. Wallace

    (Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology, N-7491 Trondheim, Norway)

Abstract

In models of decision making under uncertainty we often are faced with the problem of representing the uncertainties in a form suitable for quantitative models. If the uncertainties are expressed in terms of multivariate continuous distributions, or a discrete distribution with far too many outcomes, we normally face two possibilities: either creating a decision model with internal sampling, or trying to find a simple discrete approximation of the given distribution that serves as input to the model. This paper presents a method based on nonlinear programming that can be used to generate a limited number of discrete outcomes that satisfy specified statistical properties. Users are free to specify any statistical properties they find relevant, and the method can handle inconsistencies in the specifications. The basic idea is to minimize some measure of distance between the statistical properties of the generated outcomes and the specified properties. We illustrate the method by single- and multiple-period problems. The results are encouraging in that a limited number of generated outcomes indeed have statistical properties that are close to or equal to the specifications. We discuss how to verify that the relevant statistical properties are captured in these specifications, and argue that what are the relevant properties, will be problem dependent.

Suggested Citation

  • Kjetil Høyland & Stein W. Wallace, 2001. "Generating Scenario Trees for Multistage Decision Problems," Management Science, INFORMS, vol. 47(2), pages 295-307, February.
  • Handle: RePEc:inm:ormnsc:v:47:y:2001:i:2:p:295-307
    DOI: 10.1287/mnsc.47.2.295.9834
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.47.2.295.9834
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.47.2.295.9834?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David R. Cariño & David H. Myers & William T. Ziemba, 1998. "Concepts, Technical Issues, and Uses of the Russell-Yasuda Kasai Financial Planning Model," Operations Research, INFORMS, vol. 46(4), pages 450-462, August.
    2. James E. Smith, 1993. "Moment Methods for Decision Analysis," Management Science, INFORMS, vol. 39(3), pages 340-358, March.
    3. Julia L. Higle & Suvrajeet Sen, 1991. "Stochastic Decomposition: An Algorithm for Two-Stage Linear Programs with Recourse," Mathematics of Operations Research, INFORMS, vol. 16(3), pages 650-669, August.
    4. Donald L. Keefer & Samuel E. Bodily, 1983. "Three-Point Approximations for Continuous Random Variables," Management Science, INFORMS, vol. 29(5), pages 595-609, May.
    5. Allen C. Miller, III & Thomas R. Rice, 1983. "Discrete Approximations of Probability Distributions," Management Science, INFORMS, vol. 29(3), pages 352-362, March.
    6. Hoyland, Kjetil & Wallace, Stein W., 2001. "Analyzing legal regulations in the Norwegian life insurance business using a multistage asset-liability management model," European Journal of Operational Research, Elsevier, vol. 134(2), pages 293-308, October.
    7. Donald L. Keefer, 1994. "Certainty Equivalents for Three-Point Discrete-Distribution Approximations," Management Science, INFORMS, vol. 40(6), pages 760-773, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert K. Hammond & J. Eric Bickel, 2013. "Reexamining Discrete Approximations to Continuous Distributions," Decision Analysis, INFORMS, vol. 10(1), pages 6-25, March.
    2. Konstantin Pavlikov & Stan Uryasev, 2018. "CVaR distance between univariate probability distributions and approximation problems," Annals of Operations Research, Springer, vol. 262(1), pages 67-88, March.
    3. Woodruff, Joshua & Dimitrov, Nedialko B., 2018. "Optimal discretization for decision analysis," Operations Research Perspectives, Elsevier, vol. 5(C), pages 288-305.
    4. Thomas W. Keelin & Bradford W. Powley, 2011. "Quantile-Parameterized Distributions," Decision Analysis, INFORMS, vol. 8(3), pages 206-219, September.
    5. Tanaka, Ken'ichiro & Toda, Alexis Akira, 2015. "Discretizing Distributions with Exact Moments: Error Estimate and Convergence Analysis," University of California at San Diego, Economics Working Paper Series qt7g23r5kh, Department of Economics, UC San Diego.
    6. Ravi Kashyap, 2016. "The Perfect Marriage and Much More: Combining Dimension Reduction, Distance Measures and Covariance," Papers 1603.09060, arXiv.org, revised Jul 2019.
    7. Kashyap, Ravi, 2019. "The perfect marriage and much more: Combining dimension reduction, distance measures and covariance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    8. Soltani, Mohamad & Samorani, Michele & Kolfal, Bora, 2019. "Appointment scheduling with multiple providers and stochastic service times," European Journal of Operational Research, Elsevier, vol. 277(2), pages 667-683.
    9. Ignacio Rios & Andres Weintraub & Roger J.-B. Wets, 2016. "Building a stochastic programming model from scratch: a harvesting management example," Quantitative Finance, Taylor & Francis Journals, vol. 16(2), pages 189-199, February.
    10. Yijing Li & Prakash P. Shenoy, 2012. "A Framework for Solving Hybrid Influence Diagrams Containing Deterministic Conditional Distributions," Decision Analysis, INFORMS, vol. 9(1), pages 55-75, March.
    11. De Reyck, Bert & Degraeve, Zeger & Vandenborre, Roger, 2008. "Project options valuation with net present value and decision tree analysis," European Journal of Operational Research, Elsevier, vol. 184(1), pages 341-355, January.
    12. John M. Charnes & Prakash P. Shenoy, 2004. "Multistage Monte Carlo Method for Solving Influence Diagrams Using Local Computation," Management Science, INFORMS, vol. 50(3), pages 405-418, March.
    13. Jing Ai & Patrick L. Brockett & Tianyang Wang, 2017. "Optimal Enterprise Risk Management and Decision Making With Shared and Dependent Risks," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(4), pages 1127-1169, December.
    14. James W. Taylor, 2005. "Generating Volatility Forecasts from Value at Risk Estimates," Management Science, INFORMS, vol. 51(5), pages 712-725, May.
    15. Silvia Araújo dos Reis & José Eugenio Leal & Antônio Márcio Tavares Thomé, 2023. "A Two-Stage Stochastic Linear Programming Model for Tactical Planning in the Soybean Supply Chain," Logistics, MDPI, vol. 7(3), pages 1-26, August.
    16. Fadhil Y. Al-Aboosi & Mahmoud M. El-Halwagi, 2019. "A Stochastic Optimization Approach to the Design of Shale Gas/Oil Wastewater Treatment Systems with Multiple Energy Sources under Uncertainty," Sustainability, MDPI, vol. 11(18), pages 1-39, September.
    17. Craig W. Kirkwood & Matthew P. Slaven & Arnold Maltz, 2005. "Improving Supply-Chain-Reconfiguration Decisions at IBM," Interfaces, INFORMS, vol. 35(6), pages 460-473, December.
    18. Concha Bielza & Peter Müller & David Ríos Insua, 1999. "Decision Analysis by Augmented Probability Simulation," Management Science, INFORMS, vol. 45(7), pages 995-1007, July.
    19. Robert K. Hammond & J. Eric Bickel, 2017. "Discretization Precision and Assessment Error," Decision Analysis, INFORMS, vol. 14(1), pages 21-34, March.
    20. Sahoo, Nihar R. & Mohapatra, Pratap K.J. & Mahanty, Biswajit, 2017. "Compliance choice analysis for India's thermal power sector in the market-based energy efficiency regime," Energy Policy, Elsevier, vol. 108(C), pages 624-633.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:47:y:2001:i:2:p:295-307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.