IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v43y2024i6p1936-1955.html
   My bibliography  Save this article

Vine copula‐based scenario tree generation approaches for portfolio optimization

Author

Listed:
  • Xiaolei He
  • Weiguo Zhang

Abstract

This paper presents an efficient heuristic to generate multi‐stage scenario trees for portfolio selection problems. In the case of two or more risky assets, investors need to account for the complex multivariate dependence among different assets. The dependence patterns have shown not only asymmetric and fat tails but also time‐varying, and the upper and lower tails have different effect on portfolio management. In this paper, we design a new scenario generation method by combining the GARCH‐type model and vine copula model to properly reflect these complex dependence patterns in multiple assets in a flexible way. A multi‐stage scenario tree is generated sequentially from this model by simultaneously utilizing the simulation and clustering methods. The scenarios' nodal probabilities are determined by solving an improved moment matching model, whose objective is to maintain the central moments and lower tails of the original distribution. The resulting scenario trees are then tested on a multi‐stage portfolio selection model. The experimental results prove the efficiency and advantages of our proposed scenario generation method over other existing models or methods and the positive influence of moment matching on our method.

Suggested Citation

  • Xiaolei He & Weiguo Zhang, 2024. "Vine copula‐based scenario tree generation approaches for portfolio optimization," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1936-1955, September.
  • Handle: RePEc:wly:jforec:v:43:y:2024:i:6:p:1936-1955
    DOI: 10.1002/for.3112
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.3112
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.3112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dißmann, J. & Brechmann, E.C. & Czado, C. & Kurowicka, D., 2013. "Selecting and estimating regular vine copulae and application to financial returns," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 52-69.
    2. Latorre, Jesus M & Cerisola, Santiago & Ramos, Andres, 2007. "Clustering algorithms for scenario tree generation: Application to natural hydro inflows," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1339-1353, September.
    3. Andrea Consiglio & Angelo Carollo & Stavros A. Zenios, 2016. "A parsimonious model for generating arbitrage-free scenario trees," Quantitative Finance, Taylor & Francis Journals, vol. 16(2), pages 201-212, February.
    4. Weiguo Zhang & Xiaolei He, 2022. "A New Scenario Reduction Method Based on Higher-Order Moments," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 1903-1918, July.
    5. Ponomareva, K. & Roman, D. & Date, P., 2015. "An algorithm for moment-matching scenario generation with application to financial portfolio optimisation," European Journal of Operational Research, Elsevier, vol. 240(3), pages 678-687.
    6. Zhe Yan & Zhiping Chen & Giorgio Consigli & Jia Liu & Ming Jin, 2020. "A copula-based scenario tree generation algorithm for multiperiod portfolio selection problems," Annals of Operations Research, Springer, vol. 292(2), pages 849-881, September.
    7. François Longin & Bruno Solnik, 2001. "Extreme Correlation of International Equity Markets," Journal of Finance, American Finance Association, vol. 56(2), pages 649-676, April.
    8. Fan Zhang & Zhichao Zhang, 2018. "Strategic asset allocation by mixing shrinkage, vine copula and market equilibrium," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(3), pages 340-351, April.
    9. Kjetil Høyland & Stein W. Wallace, 2001. "Generating Scenario Trees for Multistage Decision Problems," Management Science, INFORMS, vol. 47(2), pages 295-307, February.
    10. Gulpinar, Nalan & Rustem, Berc & Settergren, Reuben, 2004. "Simulation and optimization approaches to scenario tree generation," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1291-1315, April.
    11. Omar Abbara & Mauricio Zevallos, 2018. "Modeling and forecasting intraday VaR of an exchange rate portfolio," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(7), pages 729-738, November.
    12. René Henrion & Christian Küchler & Werner Römisch, 2009. "Scenario reduction in stochastic programming with respect to discrepancy distances," Computational Optimization and Applications, Springer, vol. 43(1), pages 67-93, May.
    13. Ling Hu, 2006. "Dependence patterns across financial markets: a mixed copula approach," Applied Financial Economics, Taylor & Francis Journals, vol. 16(10), pages 717-729.
    14. Sébastien Laurent & Jean–Philippe Peters, 2002. "G@RCH 2.2: An Ox Package for Estimating and Forecasting Various ARCH Models," Journal of Economic Surveys, Wiley Blackwell, vol. 16(3), pages 447-484, July.
    15. Michal Kaut, 2014. "A copula-based heuristic for scenario generation," Computational Management Science, Springer, vol. 11(4), pages 503-516, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhe Yan & Zhiping Chen & Giorgio Consigli & Jia Liu & Ming Jin, 2020. "A copula-based scenario tree generation algorithm for multiperiod portfolio selection problems," Annals of Operations Research, Springer, vol. 292(2), pages 849-881, September.
    2. Weiguo Zhang & Xiaolei He, 2022. "A New Scenario Reduction Method Based on Higher-Order Moments," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 1903-1918, July.
    3. Hendriks, Johannes Jurgens & Bonga-Bonga, Lumengo, 2020. "Sectoral dependence and contagion in the BRICS grouping: an application of the R-Vine copulas," MPRA Paper 102473, University Library of Munich, Germany.
    4. Liu, Pei-chen Barry & Hansen, Mark & Mukherjee, Avijit, 2008. "Scenario-based air traffic flow management: From theory to practice," Transportation Research Part B: Methodological, Elsevier, vol. 42(7-8), pages 685-702, August.
    5. Wu, Dexiang & Wu, Desheng Dash, 2020. "A decision support approach for two-stage multi-objective index tracking using improved lagrangian decomposition," Omega, Elsevier, vol. 91(C).
    6. Dimic, Nebojsa & Piljak, Vanja & Swinkels, Laurens & Vulanovic, Milos, 2021. "The structure and degree of dependence in government bond markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    7. Guobin Fan & Eric Girardin & Wong K. Wong & Yong Zeng, 2015. "The Risk of Individual Stocks’ Tail Dependence with the Market and Its Effect on Stock Returns," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-17, November.
    8. Patrizia Beraldi & Maria Bruni, 2014. "A clustering approach for scenario tree reduction: an application to a stochastic programming portfolio optimization problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 934-949, October.
    9. Topaloglou, Nikolas & Vladimirou, Hercules & Zenios, Stavros A., 2020. "Integrated dynamic models for hedging international portfolio risks," European Journal of Operational Research, Elsevier, vol. 285(1), pages 48-65.
    10. Wahbeeah Mohti & Andreia Dionísio & Paulo Ferreira & Isabel Vieira, 2019. "Contagion of the Subprime Financial Crisis on Frontier Stock Markets: A Copula Analysis," Economies, MDPI, vol. 7(1), pages 1-14, February.
    11. Weiß, Gregor N.F. & Scheffer, Marcus, 2015. "Mixture pair-copula-constructions," Journal of Banking & Finance, Elsevier, vol. 54(C), pages 175-191.
    12. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    13. Kim, Sojung & Weber, Stefan, 2022. "Simulation methods for robust risk assessment and the distorted mix approach," European Journal of Operational Research, Elsevier, vol. 298(1), pages 380-398.
    14. Roch, Oriol & Alegre, Antonio, 2006. "Testing the bivariate distribution of daily equity returns using copulas. An application to the Spanish stock market," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1312-1329, November.
    15. Grundke, Peter & Polle, Simone, 2012. "Crisis and risk dependencies," European Journal of Operational Research, Elsevier, vol. 223(2), pages 518-528.
    16. Delatte, Anne-Laure & Lopez, Claude, 2013. "Commodity and equity markets: Some stylized facts from a copula approach," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5346-5356.
    17. Pöstges, Arne & Weber, Christoph, 2019. "Time series aggregation – A new methodological approach using the “peak-load-pricing” model," Utilities Policy, Elsevier, vol. 59(C), pages 1-1.
    18. Mensah, Jones Odei & Premaratne, Gamini, 2014. "Dependence patterns among Banking Sectors in Asia: A Copula Approach," MPRA Paper 60119, University Library of Munich, Germany.
    19. Chen, Bin & Hong, Yongmiao, 2014. "A unified approach to validating univariate and multivariate conditional distribution models in time series," Journal of Econometrics, Elsevier, vol. 178(P1), pages 22-44.
    20. Mokni, Khaled & Mansouri, Faysal, 2017. "Conditional dependence between international stock markets: A long memory GARCH-copula model approach," Journal of Multinational Financial Management, Elsevier, vol. 42, pages 116-131.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:43:y:2024:i:6:p:1936-1955. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.