IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v34y2022i4p1903-1918.html
   My bibliography  Save this article

A New Scenario Reduction Method Based on Higher-Order Moments

Author

Listed:
  • Weiguo Zhang

    (School of Business Administration, South China University of Technology, Guangzhou 510641, China)

  • Xiaolei He

    (School of Business Administration, South China University of Technology, Guangzhou 510641, China)

Abstract

Scenario reduction is an effective method to ease the computational burden of stochastic programming problems, which aims at choosing a subset of scenarios that can better represent a large number of possible scenarios. Higher-order moments are critical in the scenario reduction process, especially for stochastic programming problems that are greatly affected by the moments. From this idea, we construct a mixed integer linear programming model to improve the reduction accuracy of traditional methods by minimizing the moments’ information loss between the original and reduced scenarios. An improved Benders decomposition algorithm is then designed to find an optimal solution for the model. Finally, the resulting scenarios are examined on an international portfolio selection problem. Empirical and comparative studies are also carried out to reveal the superiority of our proposed scenario reduction method over other existing approaches or models, together with the superior performance of the algorithm. Summary of Contribution: To effectively solve stochastic programming problems, the scenario reduction method has become an active research area to strike a balance between the fine representation of random variables and computational complexity. Thus, how to design a reasonable optimal scenario reduction model and effectively solve this complex model is very important and meaningful. On the other hand, for some stochastic programming problems, especially the portfolio selection problems, statistical properties of risky assets returns may play a more important role in the scenario reduction process. However, the traditional scenario reduction methods have ignored this point. Thus, in this paper, we propose a mixed integer linear programming model to improve the reduction accuracy by minimizing the higher-order moments’ information loss between the original and reduced scenarios. Furthermore, an accelerated Benders decomposition algorithm is also designed to solve the proposed model. Hence, the aim of this paper is to extend the existing scenario reduction method in substantial and meaningful ways.

Suggested Citation

  • Weiguo Zhang & Xiaolei He, 2022. "A New Scenario Reduction Method Based on Higher-Order Moments," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 1903-1918, July.
  • Handle: RePEc:inm:orijoc:v:34:y:2022:i:4:p:1903-1918
    DOI: 10.1287/ijoc.2021.1155
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2021.1155
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2021.1155?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michal Kaut & Hercules Vladimirou & Stein W. Wallace & Stavros A. Zenios, 2007. "Stability analysis of portfolio management with conditional value-at-risk," Quantitative Finance, Taylor & Francis Journals, vol. 7(4), pages 397-409.
    2. T. L. Magnanti & R. T. Wong, 1981. "Accelerating Benders Decomposition: Algorithmic Enhancement and Model Selection Criteria," Operations Research, INFORMS, vol. 29(3), pages 464-484, June.
    3. Kjetil Høyland & Stein W. Wallace, 2001. "Generating Scenario Trees for Multistage Decision Problems," Management Science, INFORMS, vol. 47(2), pages 295-307, February.
    4. Zhiping Chen & Daobao Xu, 2014. "Knowledge‐based scenario tree generation methods and application in multiperiod portfolio selection problem," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 30(3), pages 240-257, May.
    5. A. M. Geoffrion & G. W. Graves, 1974. "Multicommodity Distribution System Design by Benders Decomposition," Management Science, INFORMS, vol. 20(5), pages 822-844, January.
    6. Walter Rei & Jean-François Cordeau & Michel Gendreau & Patrick Soriano, 2009. "Accelerating Benders Decomposition by Local Branching," INFORMS Journal on Computing, INFORMS, vol. 21(2), pages 333-345, May.
    7. René Henrion & Christian Küchler & Werner Römisch, 2009. "Scenario reduction in stochastic programming with respect to discrepancy distances," Computational Optimization and Applications, Springer, vol. 43(1), pages 67-93, May.
    8. Raimund Kovacevic & Alois Pichler, 2015. "Tree approximation for discrete time stochastic processes: a process distance approach," Annals of Operations Research, Springer, vol. 235(1), pages 395-421, December.
    9. Ponomareva, K. & Roman, D. & Date, P., 2015. "An algorithm for moment-matching scenario generation with application to financial portfolio optimisation," European Journal of Operational Research, Elsevier, vol. 240(3), pages 678-687.
    10. Patrizia Beraldi & Maria Bruni, 2014. "A clustering approach for scenario tree reduction: an application to a stochastic programming portfolio optimization problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 934-949, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elisangela Martins de Sá & Ivan Contreras & Jean-François Cordeau & Ricardo Saraiva de Camargo & Gilberto de Miranda, 2015. "The Hub Line Location Problem," Transportation Science, INFORMS, vol. 49(3), pages 500-518, August.
    2. Ragheb Rahmaniani & Shabbir Ahmed & Teodor Gabriel Crainic & Michel Gendreau & Walter Rei, 2020. "The Benders Dual Decomposition Method," Operations Research, INFORMS, vol. 68(3), pages 878-895, May.
    3. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    4. Lixin Tang & Wei Jiang & Georgios Saharidis, 2013. "An improved Benders decomposition algorithm for the logistics facility location problem with capacity expansions," Annals of Operations Research, Springer, vol. 210(1), pages 165-190, November.
    5. Teodor Gabriel Crainic & Mike Hewitt & Francesca Maggioni & Walter Rei, 2021. "Partial Benders Decomposition: General Methodology and Application to Stochastic Network Design," Transportation Science, INFORMS, vol. 55(2), pages 414-435, March.
    6. Jeihoonian, Mohammad & Kazemi Zanjani, Masoumeh & Gendreau, Michel, 2016. "Accelerating Benders decomposition for closed-loop supply chain network design: Case of used durable products with different quality levels," European Journal of Operational Research, Elsevier, vol. 251(3), pages 830-845.
    7. Vedat Bayram & Hande Yaman, 2018. "Shelter Location and Evacuation Route Assignment Under Uncertainty: A Benders Decomposition Approach," Transportation Science, INFORMS, vol. 52(2), pages 416-436, March.
    8. Joe Naoum-Sawaya & Samir Elhedhli, 2013. "An interior-point Benders based branch-and-cut algorithm for mixed integer programs," Annals of Operations Research, Springer, vol. 210(1), pages 33-55, November.
    9. Kiho Seo & Seulgi Joung & Chungmok Lee & Sungsoo Park, 2022. "A Closest Benders Cut Selection Scheme for Accelerating the Benders Decomposition Algorithm," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2804-2827, September.
    10. Hanif Sherali & Ki-Hwan Bae & Mohamed Haouari, 2013. "A benders decomposition approach for an integrated airline schedule design and fleet assignment problem with flight retiming, schedule balance, and demand recapture," Annals of Operations Research, Springer, vol. 210(1), pages 213-244, November.
    11. Hanif Sherali & Brian Lunday, 2013. "On generating maximal nondominated Benders cuts," Annals of Operations Research, Springer, vol. 210(1), pages 57-72, November.
    12. de Sá, Elisangela Martins & de Camargo, Ricardo Saraiva & de Miranda, Gilberto, 2013. "An improved Benders decomposition algorithm for the tree of hubs location problem," European Journal of Operational Research, Elsevier, vol. 226(2), pages 185-202.
    13. Shengzhi Shao & Hanif D. Sherali & Mohamed Haouari, 2017. "A Novel Model and Decomposition Approach for the Integrated Airline Fleet Assignment, Aircraft Routing, and Crew Pairing Problem," Transportation Science, INFORMS, vol. 51(1), pages 233-249, February.
    14. Gutierrez, Genaro J. & Kouvelis, Panagiotis & Kurawarwala, Abbas A., 1996. "A robustness approach to uncapacitated network design problems," European Journal of Operational Research, Elsevier, vol. 94(2), pages 362-376, October.
    15. M. Jenabi & S. M. T. Fatemi Ghomi & S. A. Torabi & Moeen Sammak Jalali, 2022. "An accelerated Benders decomposition algorithm for stochastic power system expansion planning using sample average approximation," OPSEARCH, Springer;Operational Research Society of India, vol. 59(4), pages 1304-1336, December.
    16. Peiling Wu & Joseph C. Hartman & George R. Wilson, 2005. "An Integrated Model and Solution Approach for Fleet Sizing with Heterogeneous Assets," Transportation Science, INFORMS, vol. 39(1), pages 87-103, February.
    17. Brech, Claus-Henning & Ernst, Andreas & Kolisch, Rainer, 2019. "Scheduling medical residents’ training at university hospitals," European Journal of Operational Research, Elsevier, vol. 274(1), pages 253-266.
    18. Lim, Gino J. & Bard, Jonathan F., 2016. "Benders decomposition and an IP-based heuristic for selecting IMRT treatment beam anglesAuthor-Name: Lin, Sifeng," European Journal of Operational Research, Elsevier, vol. 251(3), pages 715-726.
    19. Halit Üster & Panitan Kewcharoenwong, 2011. "Strategic Design and Analysis of a Relay Network in Truckload Transportation," Transportation Science, INFORMS, vol. 45(4), pages 505-523, November.
    20. Roni, Md.S. & Eksioglu, Sandra D. & Searcy, Erin & Jha, Krishna, 2014. "A supply chain network design model for biomass co-firing in coal-fired power plants," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 115-134.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:34:y:2022:i:4:p:1903-1918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.