IDEAS home Printed from https://ideas.repec.org/a/spr/opsear/v59y2022i4d10.1007_s12597-021-00559-9.html
   My bibliography  Save this article

An accelerated Benders decomposition algorithm for stochastic power system expansion planning using sample average approximation

Author

Listed:
  • M. Jenabi

    (Amirkabir University of Technology)

  • S. M. T. Fatemi Ghomi

    (Amirkabir University of Technology)

  • S. A. Torabi

    (University of Tehran)

  • Moeen Sammak Jalali

    (Amirkabir University of Technology)

Abstract

This paper proposes a stochastic programming model and a combined solution algorithm to solve integrated resource planning (IRP) problem of electric power systems in which supply and demand side resources are combined to construct a pool of resources to expand the power systems. The problem is formulated as a two-stage recourse model, where random uncertainties in demand, operating costs, equivalent availability of generation units and customer responses to demand side management programs are taken into account. The solution methodology integrates an exterior sampling strategy, the sample average approximation algorithm, with an accelerated Benders decomposition algorithm to compute high quality solutions to the stochastic IRP problem with exponentially large number of scenarios. The proposed integrated algorithm is implemented on the modified 6, 21 and 48 bus IEEE reliability test systems and the confidence intervals of lower and upper bounds of optimal objective function as well as optimality gap are reported.

Suggested Citation

  • M. Jenabi & S. M. T. Fatemi Ghomi & S. A. Torabi & Moeen Sammak Jalali, 2022. "An accelerated Benders decomposition algorithm for stochastic power system expansion planning using sample average approximation," OPSEARCH, Springer;Operational Research Society of India, vol. 59(4), pages 1304-1336, December.
  • Handle: RePEc:spr:opsear:v:59:y:2022:i:4:d:10.1007_s12597-021-00559-9
    DOI: 10.1007/s12597-021-00559-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12597-021-00559-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12597-021-00559-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zahedi Rad, Vahid & Torabi, S. Ali & Shakouri G., Hamed, 2019. "Joint electricity generation and transmission expansion planning under integrated gas and power system," Energy, Elsevier, vol. 167(C), pages 523-537.
    2. Fitiwi, Desta Z. & de Cuadra, F. & Olmos, L. & Rivier, M., 2015. "A new approach of clustering operational states for power network expansion planning problems dealing with RES (renewable energy source) generation operational variability and uncertainty," Energy, Elsevier, vol. 90(P2), pages 1360-1376.
    3. Santos, Maria João & Ferreira, Paula & Araújo, Madalena, 2016. "A methodology to incorporate risk and uncertainty in electricity power planning," Energy, Elsevier, vol. 115(P2), pages 1400-1411.
    4. Seddighi, Amir Hossein & Ahmadi-Javid, Amir, 2015. "Integrated multiperiod power generation and transmission expansion planning with sustainability aspects in a stochastic environment," Energy, Elsevier, vol. 86(C), pages 9-18.
    5. Fitiwi, Desta Z. & Lynch, Muireann & Bertsch, Valentin, 2020. "Enhanced network effects and stochastic modelling in generation expansion planning: Insights from an insular power system," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    6. Ioannou, Anastasia & Fuzuli, Gulistiani & Brennan, Feargal & Yudha, Satya Widya & Angus, Andrew, 2019. "Multi-stage stochastic optimization framework for power generation system planning integrating hybrid uncertainty modelling," Energy Economics, Elsevier, vol. 80(C), pages 760-776.
    7. Poojari, C.A. & Beasley, J.E., 2009. "Improving benders decomposition using a genetic algorithm," European Journal of Operational Research, Elsevier, vol. 199(1), pages 89-97, November.
    8. Cote, Gilles & Laughton, Michael A., 1984. "Large-scale mixed integer programming: Benders-type heuristics," European Journal of Operational Research, Elsevier, vol. 16(3), pages 327-333, June.
    9. T. L. Magnanti & R. T. Wong, 1981. "Accelerating Benders Decomposition: Algorithmic Enhancement and Model Selection Criteria," Operations Research, INFORMS, vol. 29(3), pages 464-484, June.
    10. Matteo Fischetti & Ivana Ljubić & Markus Sinnl, 2017. "Redesigning Benders Decomposition for Large-Scale Facility Location," Management Science, INFORMS, vol. 63(7), pages 2146-2162, July.
    11. Hanif Sherali & Brian Lunday, 2013. "On generating maximal nondominated Benders cuts," Annals of Operations Research, Springer, vol. 210(1), pages 57-72, November.
    12. Nader Azad & Georgios Saharidis & Hamid Davoudpour & Hooman Malekly & Seyed Yektamaram, 2013. "Strategies for protecting supply chain networks against facility and transportation disruptions: an improved Benders decomposition approach," Annals of Operations Research, Springer, vol. 210(1), pages 125-163, November.
    13. Walter Rei & Jean-François Cordeau & Michel Gendreau & Patrick Soriano, 2009. "Accelerating Benders Decomposition by Local Branching," INFORMS Journal on Computing, INFORMS, vol. 21(2), pages 333-345, May.
    14. Dale McDaniel & Mike Devine, 1977. "A Modified Benders' Partitioning Algorithm for Mixed Integer Programming," Management Science, INFORMS, vol. 24(3), pages 312-319, November.
    15. Santoso, Tjendera & Ahmed, Shabbir & Goetschalckx, Marc & Shapiro, Alexander, 2005. "A stochastic programming approach for supply chain network design under uncertainty," European Journal of Operational Research, Elsevier, vol. 167(1), pages 96-115, November.
    16. Hobbs, Benjamin F., 1995. "Optimization methods for electric utility resource planning," European Journal of Operational Research, Elsevier, vol. 83(1), pages 1-20, May.
    17. Vahab Vahdat & Mohammad Ali Vahdatzad, 2017. "Accelerated Benders’ Decomposition for Integrated Forward/Reverse Logistics Network Design under Uncertainty," Logistics, MDPI, vol. 1(2), pages 1-21, December.
    18. Sansavini, G. & Piccinelli, R. & Golea, L.R. & Zio, E., 2014. "A stochastic framework for uncertainty analysis in electric power transmission systems with wind generation," Renewable Energy, Elsevier, vol. 64(C), pages 71-81.
    19. Julia L. Higle & Suvrajeet Sen, 1991. "Stochastic Decomposition: An Algorithm for Two-Stage Linear Programs with Recourse," Mathematics of Operations Research, INFORMS, vol. 16(3), pages 650-669, August.
    20. M Jenabi & S M T Fatemi Ghomi & S A Torabi & S H Hosseinian, 2013. "A Benders decomposition algorithm for a multi-area, multi-stage integrated resource planning in power systems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(8), pages 1118-1136, August.
    21. Khaligh, Vahid & Anvari-Moghaddam, Amjad, 2019. "Stochastic expansion planning of gas and electricity networks: A decentralized-based approach," Energy, Elsevier, vol. 186(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Al-Lawati, Razan A.H. & Faiz, Tasnim Ibn & Noor-E-Alam, Md., 2024. "A nationwide multi-location multi-resource stochastic programming based energy planning framework," Energy, Elsevier, vol. 295(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Jenabi & S. Fatemi Ghomi & S. Torabi & S. Hosseinian, 2015. "Acceleration strategies of Benders decomposition for the security constraints power system expansion planning," Annals of Operations Research, Springer, vol. 235(1), pages 337-369, December.
    2. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    3. Azad, Nader & Hassini, Elkafi, 2019. "Recovery strategies from major supply disruptions in single and multiple sourcing networks," European Journal of Operational Research, Elsevier, vol. 275(2), pages 481-501.
    4. Teodor Gabriel Crainic & Mike Hewitt & Francesca Maggioni & Walter Rei, 2021. "Partial Benders Decomposition: General Methodology and Application to Stochastic Network Design," Transportation Science, INFORMS, vol. 55(2), pages 414-435, March.
    5. Ragheb Rahmaniani & Shabbir Ahmed & Teodor Gabriel Crainic & Michel Gendreau & Walter Rei, 2020. "The Benders Dual Decomposition Method," Operations Research, INFORMS, vol. 68(3), pages 878-895, May.
    6. Jeihoonian, Mohammad & Kazemi Zanjani, Masoumeh & Gendreau, Michel, 2016. "Accelerating Benders decomposition for closed-loop supply chain network design: Case of used durable products with different quality levels," European Journal of Operational Research, Elsevier, vol. 251(3), pages 830-845.
    7. de Sá, Elisangela Martins & de Camargo, Ricardo Saraiva & de Miranda, Gilberto, 2013. "An improved Benders decomposition algorithm for the tree of hubs location problem," European Journal of Operational Research, Elsevier, vol. 226(2), pages 185-202.
    8. Munoz, F.D. & Hobbs, B.F. & Watson, J.-P., 2016. "New bounding and decomposition approaches for MILP investment problems: Multi-area transmission and generation planning under policy constraints," European Journal of Operational Research, Elsevier, vol. 248(3), pages 888-898.
    9. Keyvanshokooh, Esmaeil & Ryan, Sarah M. & Kabir, Elnaz, 2016. "Hybrid robust and stochastic optimization for closed-loop supply chain network design using accelerated Benders decomposition," European Journal of Operational Research, Elsevier, vol. 249(1), pages 76-92.
    10. Lixin Tang & Wei Jiang & Georgios Saharidis, 2013. "An improved Benders decomposition algorithm for the logistics facility location problem with capacity expansions," Annals of Operations Research, Springer, vol. 210(1), pages 165-190, November.
    11. Hanif Sherali & Brian Lunday, 2013. "On generating maximal nondominated Benders cuts," Annals of Operations Research, Springer, vol. 210(1), pages 57-72, November.
    12. Maher, Stephen J., 2021. "Implementing the branch-and-cut approach for a general purpose Benders’ decomposition framework," European Journal of Operational Research, Elsevier, vol. 290(2), pages 479-498.
    13. Daniel Baena & Jordi Castro & Antonio Frangioni, 2020. "Stabilized Benders Methods for Large-Scale Combinatorial Optimization, with Application to Data Privacy," Management Science, INFORMS, vol. 66(7), pages 3051-3068, July.
    14. N. Beheshti Asl & S. A. MirHassani, 2019. "Accelerating benders decomposition: multiple cuts via multiple solutions," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 806-826, April.
    15. Walter Rei & Jean-François Cordeau & Michel Gendreau & Patrick Soriano, 2009. "Accelerating Benders Decomposition by Local Branching," INFORMS Journal on Computing, INFORMS, vol. 21(2), pages 333-345, May.
    16. Joe Naoum-Sawaya & Samir Elhedhli, 2013. "An interior-point Benders based branch-and-cut algorithm for mixed integer programs," Annals of Operations Research, Springer, vol. 210(1), pages 33-55, November.
    17. Hanif Sherali & Ki-Hwan Bae & Mohamed Haouari, 2013. "A benders decomposition approach for an integrated airline schedule design and fleet assignment problem with flight retiming, schedule balance, and demand recapture," Annals of Operations Research, Springer, vol. 210(1), pages 213-244, November.
    18. Qipeng Zheng & Jianhui Wang & Panos Pardalos & Yongpei Guan, 2013. "A decomposition approach to the two-stage stochastic unit commitment problem," Annals of Operations Research, Springer, vol. 210(1), pages 387-410, November.
    19. Kuthambalayan, Thyagaraj S. & Mehta, Peeyush & Shanker, Kripa, 2014. "Integrating operations and marketing decisions using delayed differentiation of products and guaranteed delivery time under stochastic demand," European Journal of Operational Research, Elsevier, vol. 237(2), pages 617-627.
    20. Vedat Bayram & Hande Yaman, 2018. "Shelter Location and Evacuation Route Assignment Under Uncertainty: A Benders Decomposition Approach," Transportation Science, INFORMS, vol. 52(2), pages 416-436, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opsear:v:59:y:2022:i:4:d:10.1007_s12597-021-00559-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.